30 research outputs found

    The SLUGGS survey: chromodynamical modelling of the lenticular galaxy NGC 1023

    Get PDF
    Globular clusters (GCs) can be considered discrete, long-lived, dynamical tracers that retain crucial information about the assembly history of their parent galaxy. In this paper, we present a new catalogue of GC velocities and colours for the lenticular galaxy NGC 1023, we study their kinematics and spatial distribution, in comparison with the underlying stellar kinematics and surface brightness profile, and we test a new method for studying GC properties. Specifically, we decompose the galaxy light into its spheroid (assumed to represent the bulge+halo components) and disc components and use it to assign to each GC a probability of belonging to one of the two components. Then we model the galaxy kinematics, assuming a disc and spheroidal component, using planetary nebulae and integrated stellar light. We use this kinematic model and the probability previously obtained from the photometry to recalculate for each GC its likelihood of being associated with the disc, the spheroid, or neither. We find that the reddest GCs are likely to be associated with the disc, as found for faint fuzzies in this same galaxy, suggesting that the disc of this S0 galaxy originated at z ≃ 2. The majority of blue GCs are found likely to be associated with the spheroidal (hot) component. The method also allows us to identify objects that are unlikely to be in equilibrium with the system. In NGC 1023 some of the rejected GCs form a substructure in phase space that is connected with NGC 1023 companion galaxy

    Chromodynamical analysis of lenticular galaxies using globular clusters and planetary nebulae

    Get PDF
    Recovering the origins of lenticular galaxies can shed light on the understanding of galaxy formation and evolution, since they present properties that can be found in both elliptical and spiral galaxies. In this work we study the kinematics of the globular cluster (GC) systems of three lenticular galaxies located in low density environments (NGC2768, NGC3115 and NGC7457), and compare them with the kinematics of planetary nebulae (PNe). The PNe and GC data come from the Planetary Nebulae Spectrograph and the SLUGGS Surveys. Through photometric spheroid-disc decomposition and PNe kinematics we find the probability for a given GC to belong to either the spheroid or the disc of its host galaxy or be rejected from the model. We find that there is no correlation between the components that the GCs are likely to belong to and their colours. Particularly, for NGC2768 we find that its red GCs display rotation preferentially at inner radii (Re < 1). In the case of the GC system of NGC3115 we find a group of GCs with similar kinematics that are not likely to belong to neither its spheroid nor disc. For NGC7457 we find that 70% of its GCs are likely to belong to the disc. Overall, our results suggest that these galaxies assembled into S0s through different evolutionary paths. Mergers seem to have been very important for NGC2768 and NGC3115 while NGC7457 is more likely to have experienced secular evolution

    Pediatric Hospitalizations Associated with 2009 Pandemic Influenza A (H1N1) in Argentina

    Get PDF
    Fil: Libster, Romina. Fundación Infant, Ciudad Autónoma de Buenos Aires; Argentina.Fil: Bugna, Jimena. Fundación Infant, Ciudad Autónoma de Buenos Aires; Argentina.Fil: Coviello, Silvina. Fundación Infant, Ciudad Autónoma de Buenos Aires; Argentina.Fil: Hijano, Diego R. Hospital De Niños Sor María Ludovica, La Plata; Argentina.Fil: Dunaiewsky, Mariana. Hospital General de Niños Pedro de Elizalde, Ciudad Autónoma de Buenos Aires; Argentina.Fil: Reynoso, Natalia. Hospital Municipal Materno Infantil de San Isidro; Argentina.Fil: Cavalieri, Maria L. Hospital Eva Perón, Benito Juárez, Buenos Aires; ArgentinaFil: Guglielmo, Maria C. Hospital General de Niños Pedro de Elizalde, Ciudad Autónoma de Buenos Aires; Argentina.Fil: Areso, M. Soledad. Hospital Eva Perón, Benito Juárez, Buenos Aires; ArgentinaFil: Gilligan, Tomas. Hospital General de Agudos Carlos G. Durand, Ciudad Autónoma de Buenos Aires; Argentina.Fil: Santucho, Fernanda. Hospital General de Agudos Carlos G. Durand, Ciudad Autónoma de Buenos Aires; Argentina.Fil: Cabral, Graciela. Hospital Nacional Profesor Alejandro Posadas, El Palomar, Buenos Aires; Argentina.Fil: Gregorio, Gabriela L. Hospital Nacional Profesor Alejandro Posadas, El Palomar, Buenos Aires; Argentina.Fil: Moreno, Rina. Hospital Nacional Profesor Alejandro Posadas, El Palomar, Buenos Aires; Argentina.Fil: Lutz, Maria I. Hospital Nacional Profesor Alejandro Posadas, El Palomar, Buenos Aires; Argentina.Fil: Panigasi, Alicia L. Hospital Nacional Profesor Alejandro Posadas, El Palomar, Buenos Aires; Argentina.Fil: Saligari, Liliana. Hospital Nacional Profesor Alejandro Posadas, El Palomar, Buenos Aires; Argentina.Fil: Caballero, Mauricio T. Hospital De Niños Sor María Ludovica, La Plata; Argentina.Fil: Egües Almeida, Rodrigo M. Hospital De Niños Sor María Ludovica, La Plata; Argentina.Fil: Gutierrez Meyer, Maria E. Hospital De Niños Sor María Ludovica, La Plata; Argentina.Fil: Neder, Maria D. Hospital General de Niños Pedro de Elizalde, Ciudad Autónoma de Buenos Aires; Argentina.Fil: Davenport, Maria C. Hospital General de Niños Pedro de Elizalde, Ciudad Autónoma de Buenos Aires; Argentina.Fil: Del Valle, Maria P. Hospital General de Niños Pedro de Elizalde, Ciudad Autónoma de Buenos Aires; Argentina.Fil: Santidrian, Valeria S. Hospital General de Niños Pedro de Elizalde, Ciudad Autónoma de Buenos Aires; Argentina.Fil: Mosca, Guillermina. Ministerio de Ciencia, Técnica e Innovación. Fundación Infant, Ciudad Autónoma de Buenos Aires; Argentina.Fil: Alvarez, Liliana. Hospital General de Agudos Carlos G. Durand, Ciudad Autónoma de Buenos Aires; Argentina.Fil: Landa, Patricia. Hospital General de Agudos Carlos G. Durand, Ciudad Autónoma de Buenos Aires; Argentina.Fil: Pota, Ana. Hospital General de Agudos Carlos G. Durand, Ciudad Autónoma de Buenos Aires; Argentina.Fil: Boloñati, Norma. Hospital General de Agudos Carlos G. Durand, Ciudad Autónoma de Buenos Aires; Argentina.Fil: Dalamon, Ricardo. Hospital General de Agudos Carlos G. Durand, Ciudad Autónoma de Buenos Aires; Argentina.Fil: Sanchez Mercol, Victoria I. Hospital Eva Perón, Benito Juárez, Buenos Aires; Argentina.Fil: Espinoza, Marco. Fundación Infant, Ciudad Autónoma de Buenos Aires; Argentina.Fil: Peuchot, Juan Carlos. Hospital Eva Perón, Benito Juárez, Buenos Aires; Argentina.Fil: Karolinski, Ariel. Hospital General de Agudos Carlos G. Durand, Ciudad Autónoma de Buenos Aires; Argentina.Fil: Bruno, Miriam. Hospital General de Agudos Carlos G. Durand, Ciudad Autónoma de Buenos Aires; Argentina.Fil: Borsa, Ana. Hospital General de Niños Pedro de Elizalde, Ciudad Autónoma de Buenos Aires; Argentina.Fil: Ferrero, Fernando. Hospital General de Niños Pedro de Elizalde, Ciudad Autónoma de Buenos Aires; Argentina.Fil: Bonina, Angel. Hospital De Niños Sor María Ludovica, La Plata; Argentina.Fil: Ramonet, Margarita. Hospital Nacional Profesor Alejandro Posadas, El Palomar, Buenos Aires; Argentina.Fil: Albano, Lidia C. Hospital Nacional Profesor Alejandro Posadas, El Palomar, Buenos Aires; Argentina.Fil: Luedicke, Nora. Ministerio de Ciencia, Técnica e Innovación. Fundación Infant, Ciudad Autónoma de Buenos Aires; Argentina.Fil: Alterman, Elias. Fundación Infant, Ciudad Autónoma de Buenos Aires; Argentina.Fil: Savy, Vilma L. ANLIS Dr.C.G.Malbrán. Instituto de Enfermedades Infecciosas; Argentina.Fil: Baumeister, Elsa. ANLIS Dr.C.G.Malbrán. Instituto Nacional de Enfermedades Infecciosas. Departamento de Virología. Servicio de Virosis Respiratoria; Argentina.Fil: Chappell, James D. Vanderbilt University. Pathology, Nashville, Tennessee; Estados Unidos.Fil: Edwards, Kathryn M. Vanderbilt University. Departments of Pediatrics, Nashville, Tennessee; Estados Unidos.Fil: Melendi, Guillermina A. Vanderbilt University. Departments of Pediatrics, Nashville, Tennessee; Estados Unidos.Fil: Polack, Fernando P. Vanderbilt University. Departments of Pediatrics, Nashville, Tennessee; Estados Unidos.Background: While the Northern Hemisphere experiences the effects of the 2009 pandemic influenza A (H1N1) virus, data from the recent influenza season in the Southern Hemisphere can provide important information on the burden of disease in children. Methods: We conducted a retrospective case series involving children with acute infection of the lower respiratory tract or fever in whom 2009 H1N1 influenza was diagnosed on reverse-transcriptase polymerase-chain-reaction assay and who were admitted to one of six pediatric hospitals serving a catchment area of 1.2 million children. We compared rates of admission and death with those among age-matched children who had been infected with seasonal influenza strains in previous years. Results: Between May and July 2009, a total of 251 children were hospitalized with 2009 H1N1 influenza. Rates of hospitalization were double those for seasonal influenza in 2008. Of the children who were hospitalized, 47 (19%) were admitted to an intensive care unit, 42 (17%) required mechanical ventilation, and 13 (5%) died. The overall rate of death was 1.1 per 100,000 children, as compared with 0.1 per 100,000 children for seasonal influenza in 2007. (No pediatric deaths associated with seasonal influenza were reported in 2008.) Most deaths were caused by refractory hypoxemia in infants under 1 year of age (death rate, 7.6 per 100,000). Conclusions: Pandemic 2009 H1N1 influenza was associated with pediatric death rates that were 10 times the rates for seasonal influenza in previous years

    Hyperoxemia and excess oxygen use in early acute respiratory distress syndrome : Insights from the LUNG SAFE study

    Get PDF
    Publisher Copyright: © 2020 The Author(s). Copyright: Copyright 2020 Elsevier B.V., All rights reserved.Background: Concerns exist regarding the prevalence and impact of unnecessary oxygen use in patients with acute respiratory distress syndrome (ARDS). We examined this issue in patients with ARDS enrolled in the Large observational study to UNderstand the Global impact of Severe Acute respiratory FailurE (LUNG SAFE) study. Methods: In this secondary analysis of the LUNG SAFE study, we wished to determine the prevalence and the outcomes associated with hyperoxemia on day 1, sustained hyperoxemia, and excessive oxygen use in patients with early ARDS. Patients who fulfilled criteria of ARDS on day 1 and day 2 of acute hypoxemic respiratory failure were categorized based on the presence of hyperoxemia (PaO2 > 100 mmHg) on day 1, sustained (i.e., present on day 1 and day 2) hyperoxemia, or excessive oxygen use (FIO2 ≥ 0.60 during hyperoxemia). Results: Of 2005 patients that met the inclusion criteria, 131 (6.5%) were hypoxemic (PaO2 < 55 mmHg), 607 (30%) had hyperoxemia on day 1, and 250 (12%) had sustained hyperoxemia. Excess FIO2 use occurred in 400 (66%) out of 607 patients with hyperoxemia. Excess FIO2 use decreased from day 1 to day 2 of ARDS, with most hyperoxemic patients on day 2 receiving relatively low FIO2. Multivariate analyses found no independent relationship between day 1 hyperoxemia, sustained hyperoxemia, or excess FIO2 use and adverse clinical outcomes. Mortality was 42% in patients with excess FIO2 use, compared to 39% in a propensity-matched sample of normoxemic (PaO2 55-100 mmHg) patients (P = 0.47). Conclusions: Hyperoxemia and excess oxygen use are both prevalent in early ARDS but are most often non-sustained. No relationship was found between hyperoxemia or excessive oxygen use and patient outcome in this cohort. Trial registration: LUNG-SAFE is registered with ClinicalTrials.gov, NCT02010073publishersversionPeer reviewe

    Secrets of the hospital underbelly:patterns of abundance of antimicrobial resistance genes in hospital wastewater vary by specific antimicrobial and bacterial family

    Get PDF
    Background: Hospital wastewater is a major source of antimicrobial resistance (AMR) outflow into the environment. This study uses metagenomics to study how hospital clinical activity impacts antimicrobial resistance genes (ARGs) abundances in hospital wastewater.Methods: Sewage was collected over a 24-h period from multiple wastewater collection points (CPs) representing different specialties within a tertiary hospital site and simultaneously from community sewage works. High throughput shotgun sequencing was performed using Illumina HiSeq4000. ARG abundances were correlated to hospital antimicrobial usage (AMU), data on clinical activity and resistance prevalence in clinical isolates.Results: Microbiota and ARG composition varied between CPs and overall ARG abundance was higher in hospital wastewater than in community influent. ARG and microbiota compositions were correlated (Procrustes analysis, p=0.014). Total antimicrobial usage was not associated with higher ARG abundance in wastewater. However, there was a small positive association between resistance genes and antimicrobial usage matched to ARG phenotype (IRR 1.11, CI 1.06–1.16, p&lt;0.001). Furthermore, analyzing carbapenem and vancomycin resistance separately indicated that counts of ARGs to these antimicrobials were positively associated with their increased usage [carbapenem rate ratio (RR) 1.91, 95% CI 1.01–3.72, p=0.07, and vancomycin RR 10.25, CI 2.32–49.10, p&lt;0.01]. Overall, ARG abundance within hospital wastewater did not reflect resistance patterns in clinical isolates from concurrent hospital inpatients. However, for clinical isolates of the family Enterococcaceae and Staphylococcaceae, there was a positive relationship with wastewater ARG abundance [odds ratio (OR) 1.62, CI 1.33–2.00, p&lt;0.001, and OR 1.65, CI 1.21–2.30, p=0.006 respectively].Conclusion: We found that the relationship between hospital wastewater ARGs and antimicrobial usage or clinical isolate resistance varies by specific antimicrobial and bacterial family studied. One explanation, we consider is that relationships observed from multiple departments within a single hospital site will be detectable only for ARGs against parenteral antimicrobials uniquely used in the hospital setting. Our work highlights that using metagenomics to identify the full range of ARGs in hospital wastewater is a useful surveillance tool to monitor hospital ARG carriage and outflow and guide environmental policy on AMR

    Immunocompromised patients with acute respiratory distress syndrome: Secondary analysis of the LUNG SAFE database

    Get PDF
    Background: The aim of this study was to describe data on epidemiology, ventilatory management, and outcome of acute respiratory distress syndrome (ARDS) in immunocompromised patients. Methods: We performed a post hoc analysis on the cohort of immunocompromised patients enrolled in the Large Observational Study to Understand the Global Impact of Severe Acute Respiratory Failure (LUNG SAFE) study. The LUNG SAFE study was an international, prospective study including hypoxemic patients in 459 ICUs from 50 countries across 5 continents. Results: Of 2813 patients with ARDS, 584 (20.8%) were immunocompromised, 38.9% of whom had an unspecified cause. Pneumonia, nonpulmonary sepsis, and noncardiogenic shock were their most common risk factors for ARDS. Hospital mortality was higher in immunocompromised than in immunocompetent patients (52.4% vs 36.2%; p &lt; 0.0001), despite similar severity of ARDS. Decisions regarding limiting life-sustaining measures were significantly more frequent in immunocompromised patients (27.1% vs 18.6%; p &lt; 0.0001). Use of noninvasive ventilation (NIV) as first-line treatment was higher in immunocompromised patients (20.9% vs 15.9%; p = 0.0048), and immunodeficiency remained independently associated with the use of NIV after adjustment for confounders. Forty-eight percent of the patients treated with NIV were intubated, and their mortality was not different from that of the patients invasively ventilated ab initio. Conclusions: Immunosuppression is frequent in patients with ARDS, and infections are the main risk factors for ARDS in these immunocompromised patients. Their management differs from that of immunocompetent patients, particularly the greater use of NIV as first-line ventilation strategy. Compared with immunocompetent subjects, they have higher mortality regardless of ARDS severity as well as a higher frequency of limitation of life-sustaining measures. Nonetheless, nearly half of these patients survive to hospital discharge. Trial registration: ClinicalTrials.gov, NCT02010073. Registered on 12 December 2013

    Immunocompromised patients with acute respiratory distress syndrome : Secondary analysis of the LUNG SAFE database

    Get PDF
    The aim of this study was to describe data on epidemiology, ventilatory management, and outcome of acute respiratory distress syndrome (ARDS) in immunocompromised patients. Methods: We performed a post hoc analysis on the cohort of immunocompromised patients enrolled in the Large Observational Study to Understand the Global Impact of Severe Acute Respiratory Failure (LUNG SAFE) study. The LUNG SAFE study was an international, prospective study including hypoxemic patients in 459 ICUs from 50 countries across 5 continents. Results: Of 2813 patients with ARDS, 584 (20.8%) were immunocompromised, 38.9% of whom had an unspecified cause. Pneumonia, nonpulmonary sepsis, and noncardiogenic shock were their most common risk factors for ARDS. Hospital mortality was higher in immunocompromised than in immunocompetent patients (52.4% vs 36.2%; p < 0.0001), despite similar severity of ARDS. Decisions regarding limiting life-sustaining measures were significantly more frequent in immunocompromised patients (27.1% vs 18.6%; p < 0.0001). Use of noninvasive ventilation (NIV) as first-line treatment was higher in immunocompromised patients (20.9% vs 15.9%; p = 0.0048), and immunodeficiency remained independently associated with the use of NIV after adjustment for confounders. Forty-eight percent of the patients treated with NIV were intubated, and their mortality was not different from that of the patients invasively ventilated ab initio. Conclusions: Immunosuppression is frequent in patients with ARDS, and infections are the main risk factors for ARDS in these immunocompromised patients. Their management differs from that of immunocompetent patients, particularly the greater use of NIV as first-line ventilation strategy. Compared with immunocompetent subjects, they have higher mortality regardless of ARDS severity as well as a higher frequency of limitation of life-sustaining measures. Nonetheless, nearly half of these patients survive to hospital discharge. Trial registration: ClinicalTrials.gov, NCT02010073. Registered on 12 December 2013

    Intraoperative positive end-expiratory pressure and postoperative pulmonary complications: a patient-level meta-analysis of three randomised clinical trials.

    No full text
    corecore