1,166 research outputs found

    Dark matter scattering on electrons: Accurate calculations of atomic excitations and implications for the DAMA signal

    Full text link
    We revisit the WIMP-type dark matter scattering on electrons that results in atomic ionization, and can manifest itself in a variety of existing direct-detection experiments. Unlike the WIMP-nucleon scattering, where current experiments probe typical interaction strengths much smaller than the Fermi constant, the scattering on electrons requires a much stronger interaction to be detectable, which in turn requires new light force carriers. We account for such new forces explicitly, by introducing a mediator particle with scalar or vector couplings to dark matter and to electrons. We then perform state of the art numerical calculations of atomic ionization relevant to the existing experiments. Our goals are to consistently take into account the atomic physics aspect of the problem (e.g., the relativistic effects, which can be quite significant), and to scan the parameter space: the dark matter mass, the mediator mass, and the effective coupling strength, to see if there is any part of the parameter space that could potentially explain the DAMA modulation signal. While we find that the modulation fraction of all events with energy deposition above 2 keV in NaI can be quite significant, reaching ~50%, the relevant parts of the parameter space are excluded by the XENON10 and XENON100 experiments

    Electric Dipole Moments of Leptons in the Presence of Majorana Neutrinos

    Full text link
    We calculate the two-loop diagrams that give a non-zero contribution to the electric dipole moment d_l of a charged lepton l due to possible Majorana masses of neutrinos. Using the example with one generation of the Standard Model leptons and two heavy right-handed neutrinos, we demonstrate that the non-vanishing result for d_l first appears in order O(m_l m_\nu^2 G_F^2), where m_\nu is the mass of the light neutrino and the see-saw type relation is imposed. This effect is beyond the reach of presently planned experiments.Comment: 13 page

    Sub-eV scalar dark matter through the super-renormalizable Higgs portal

    Full text link
    The Higgs portal of the Standard Model provides the opportunity for coupling to a very light scalar field ϕ\phi via the super-renormalizable operator ϕ(H†H)\phi(H^\dagger H). This allows for the existence of a very light scalar dark matter that has coherent interaction with the Standard Model particles and yet has its mass protected against radiative corrections. We analyze ensuing constraints from the fifth-force measurements, along with the cosmological requirements. We find that the detectable level of the fifth-force can be achieved in models with low inflationary scales, and certain amount of fine-tuning in the initial deviation of ϕ\phi from its minimum.Comment: 6 pages, 3 figures. References added in the revised version

    The Pion-Photon Transition Form Factor and New Physics in the Tau Sector

    Full text link
    Recent measurement of the γγ∗\gamma\gamma^\ast form factor of the neutral pion in the high Q2Q^2 region disagrees with {\em a priori} predictions of QCD-based calculations. We comment on existing explanations, and analyze a possibility that this discrepancy is not due to poorly understood QCD effects, but is a result of some new physics beyond the standard model (SM). We show that such physics would necessarily involve a new neutral light state with mass close to the mass of π0\pi^0, and with stronger than π0\pi^0 couplings to heavier SM flavors such as cc, τ\tau, and bb. It is found that only the coupling to the τ\tau lepton can survive the existing constraints and lead to the observed rise of the pion form factor relative to Q−2Q^{-2} at high Q2Q^2. We perform numerical fits to data and determine the allowed range of masses and couplings for such new particles. This range of masses and couplings could also reduce or eliminate the tension between the e+e−e^+e^- and τ\tau decay determinations of the hadronic vacuum polarization. Dedicated experimental analysis of τ\tau pair production in association with such new states should provide a conclusive test of the new physics hypothesis as an explanation to the pion form factor rise. We also comment on the calculations of the pion form factor in the chiral quark model, and point out a possible dynamical origin of the quark mass scale inferred from the form factor measurement.Comment: 13 pages, 6 figures, revtex4-1; v2: additional references, improved discussion of pion mixing case, published versio
    • …
    corecore