27,432 research outputs found
Dynamics of entanglement entropy of interacting fermions in a 1D driven harmonic trap
Following up on a recent analysis of two cold atoms in a time-dependent
harmonic trap in one dimension, we explore the entanglement entropy of two and
three fermions in the same situation when driven through a parametric
resonance. We find that the presence of such a resonance in the two-particle
system leaves a clear imprint on the entanglement entropy. We show how the
signal is modified by attractive and repulsive contact interactions, and how it
remains present for the three-particle system. Additionaly, we extend the work
of recent experiments to demonstrate how restricting observation to a limited
subsystem gives rise to locally thermal behavior.Comment: Proceedings of Lattice2017, Granada, Spai
Detecting Galactic Binaries with LISA
One of the main sources of gravitational waves for the LISA space-borne
interferometer are galactic binary systems. The waveforms for these sources are
represented by eight parameters, of which four are extrinsic, and four are
intrinsic to the system. Geometrically, these signals exist in an 8-d parameter
space. By calculating the metric tensor on this space, we calculate the number
of templates needed to search for such sources. We show in this study that
below a particular monochromatic frequency, we can ignore one of the intrinsic
parameters and search over a 7-d space. Beyond this frequency, we have a sudden
change in dimensionality of the parameter space from 7 to 8 dimensions, which
results in a change in the scaling of the growth of template number as a
function of monochromatic frequency.Comment: 7 pages-2 figures. One figure added and typos corrected. Accepted for
the proceedings of GWDAW 9, special edition of Classical and Quantum Gravit
Centaur operations at the space station
A study was conducted on the feasibility of using a Centaur vehicle as a testbed to demonstrate critical OTV technologies at the Space Station. Two Technology Demonstration Missions (TDMs) were identified: (1) Accommodations, and (2) Operations. The Accommodations TDM contained: (1) berthing, (2) checkout, maintenance and safing, and (3) payload integration missions. The Operations TDM contained: (1) a cryogenic propellant resupply mission, and (2) Centaur deployment activities. A modified Space Station Co-Orbiting Platform (COP) was selected as the optimum refueling and launch node due to safety and operational considerations. After completion of the TDMs, the fueled Centaur would carry out a mission to actually test deployment and help offset TDM costs. From the Station, the Centaur could carry a single payload in excess of 20,000 pounds to geosynchronous orbit or multiple payloads
Design considerations for a LORAN-C timing receiver in a hostile signal to noise environment
The environment in which a LORAN-C Timing Receiver may function effectively depends to a large extent on the techniques utilized to insure that interfering signals within the pass band of the unit are neutralized. The baseline performance manually operated timing receivers is discussed and the basic design considerations and necessary parameters for an automatic unit utilizing today's technology are established. Actual performance data is presented comparing the results obtained from a present generation timing receiver against a new generation microprocessor controlled automatic acquisition receiver. The achievements possible in a wide range of signal to noise situations are demonstrated
Few-fermion systems in one dimension: Ground- and excited-state energies and contacts
Using the lattice Monte Carlo method, we compute the energy and Tan's contact
in the ground state as well as the first excited state of few- to many-fermion
systems in a one-dimensional periodic box. We focus on unpolarized systems of
N=4,6,...,12 particles, with a zero-range interaction, and a wide range of
attractive couplings. In addition, we provide extrapolations to the
infinite-volume and thermodynamic limits.Comment: 8 pages, 12 figures; published versio
Estimation of Kalman filter model parameters from an ensemble of tests
A methodology for estimating initial mean and covariance parameters in a Kalman filter model from an ensemble of nonidentical tests is presented. In addition, the problem of estimating time constants and process noise levels is addressed. Practical problems such as developing and validating inertial instrument error models from laboratory test data or developing error models of individual phases of a test are generally considered
Catching Super Massive Black Hole Binaries Without a Net
The gravitational wave signals from coalescing Supermassive Black Hole
Binaries are prime targets for the Laser Interferometer Space Antenna (LISA).
With optimal data processing techniques, the LISA observatory should be able to
detect black hole mergers anywhere in the Universe. The challenge is to find
ways to dig the signals out of a combination of instrument noise and the large
foreground from stellar mass binaries in our own galaxy. The standard procedure
of matched filtering against a grid of templates can be computationally
prohibitive, especially when the black holes are spinning or the mass ratio is
large. Here we develop an alternative approach based on Metropolis-Hastings
sampling and simulated annealing that is orders of magnitude cheaper than a
grid search. We demonstrate our approach on simulated LISA data streams that
contain the signals from binary systems of Schwarzschild Black Holes, embedded
in instrument noise and a foreground containing 26 million galactic binaries.
The search algorithm is able to accurately recover the 9 parameters that
describe the black hole binary without first having to remove any of the bright
foreground sources, even when the black hole system has low signal-to-noise.Comment: 4 pages, 3 figures, Refined search algorithm, added low SNR exampl
- …