2 research outputs found

    The effect of building geometry on the size of aeolian deposition patterns: Scale model experiments at the beach

    Get PDF
    In sandy environments, like the beach-dune system, buildings not only affect the airflow, but also the aeolian sediment transport in their surroundings. In this study, we determine how the horizontal size of sediment deposition patterns around buildings depends on the building's dimensions. Four one-day experiments were conducted at the beach using box-shaped scale models. We tested 32 building geometries, where scale model height, width and length ranged between 0.3 and 2.0 m. The deposition patterns were substantial in size: the total length and width of the deposition area were up to an order of magnitude larger than the horizontal building dimensions. It was found that the size of upwind and downwind deposition patterns depended more on the building width perpendicular to the wind direction (w), than on the building height (h). Building length had little influence. Especially the combined effect of w and h correlated well with horizontal deposition size. This is expressed in a new scaling length B for deposition around buildings, with B=w2/3·h1/3. As a first validation, the spatial dimensions of the initial deposition patterns observed around a scale model of 2.5 × 12 × 2.5 m, placed at the beach for five weeks, showed good agreement with those predicted based on B.Coastal Engineerin

    Beach-dune modelling in support of Building with Nature for an integrated spatial design of urbanized sandy shores

    Get PDF
    The long-term physical existence of sandy shores critically depends on a balanced sediment budget. From the principles of Building with Nature it follows that a sustainable protection of sandy shores should employ some form of shore nourishment. In the spatial design process of urbanized sandy shores, where multiple functions must be integrated, the knowledge and the prediction of sediment dynamics and beach-dune morphology thus play an essential role. This expertise typically resides with coastal scientists who have condensed their knowledge in various types of morphological models that serve different purposes and rely on different assumptions, thus have their specific strengths and limitations. This paper identifies morphological information needs for the integrated spatial design of urbanized sandy shores using BwN principles, outlines capabilities of different types of morphological models to support this and identifies current gaps between the two. A clear mismatch arises from the absence of buildings and accompanying human activities in current numerical models simulating morphological developments in beach-dune environments.Vol. 7 (2021): Building with Nature perspectives: Cross-disciplinary BwN approaches in coastal regions. ISBN 978-94-6366-379-3Landscape Architectur
    corecore