5,416 research outputs found
LTE RSRP, RSRQ, RSSNR and local topography profile data for RF propagation planning and network optimization in an urban propagation environment
In the design of 5G cellular communication to guarantee quality signal reception at every point within a coverage area, fundamental knowledge of the channel propagation characteristics is vital. A correct knowledge of electromagnetic wave propagation is required for efficient radio network planning and optimization. Propagation data are used extensively in network planning, particularly for conducting feasibility studies. Hence, measurement of accurate propagation models that predict how the channel varies as people move about is crucial. However, these measured data are often not widely available for channel characterization and propagation model development. In this data article, the Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ) and Reference Signal Signal to Noise Ratio (RSSNR) at various points in space which is covered by a Long-Term Evolution (LTE) marco base station operating at 2100 MHz located in Hatfield, Hertfordshire, United Kingdom were measured. Further, local topography profile data of the study area were extracted from a digital elevation model (DEM) to account for the features of the propagation environment. Correlation matrix and descriptive statistics of the measured LTE data along different routes are analyzed. The RSRP, RSRQ and RSSNR variation with transmitter (Tx) – receiver (Rx) separation distance along the routes are presented. The probability distribution and the DEM of LTE data measurement are likewise presented. The data provided in this article will facilitate research advancement in wireless channel characterization that accounts for local topography features in an urban propagation environment. Moreover, the data sets provided in this article can be extended using simulation-based analysis to extract spatial and temporal channel model parameters in urban cellular environments in the development of 5G channel propagation models.Peer reviewedFinal Published versio
Morphology and Properties of Zn-Al-TiO2 Composite on Mild Steel
The influence of TiO2 composite and dispersed pure Al particle on zinc alloy electrodeposited on mild
steel was studied from chloride bath solution.Microstructural and mechanical properties of the alloy were
investigated. The structure, surface morphology, and surface topography of the deposited alloys were
characterized by scanning electron microscopy (SEM) and atomic force microscope (AFM).In addition,
hardness of the coated alloys was measured. It was found that the obtained Zn-Al-TiO2 alloyexhibited
more preferred surface morphology and mechanical strength compared tothe substrate. The result shows
the existence of interaction between TiO2 compounds and zinc alloy particulate. It also exhibited well
bright dominate zinc coating on steel surface
BER and outage probability of DPSK subcarrier intensity modulated free space optics in fully developed speckle.
In this paper a differential phase shift keying (DPSK) subcarrier intensity modulated (SIM) free space optical (FSO) link is considered in negative exponential atmospheric turbulence environment. To mitigate the scintillation effect, the selection combining spatial diversity scheme (SelC) is employed at the receiver. Bit error rate (BER) and outage probability (Pout) analysis are presented with and without the SelC spatial diversity. It is shown that at a BER of 10-6, a maximum diversity gain 25 dB is predicted. And about 60 dBm signal power is required to achieve an outage probability of 10-6, based on a threshold BER of 10-4
LED-based indoor positioning system using novel optical pixelation technique
At present, about 47 million people worldwide have Alzheimer's disease (AD), and because there is no treatment currently available to cure AD, people with AD (PWAD) are cared for. The estimated cost of care for PWAD in 2016 alone is about $236 billion, which puts a huge burden on relatives of PWAD. This work aims to reduce this burden by proposing an inexpensive indoor positioning system that can be used to monitor PWAD. For the positioning, freeform lenses are used to enable a novel optically pixeled LED luminaire (OPLL) that focuses beams from LEDs to various parts of a room, thereby creating uniquely identifiable regions which are used to improve positioning accuracy. Monte Carlo simulation with the designed OPLL in a room with dimensions 5m × 5m × 3m is used to compute the positioning error and theoretical analysis and experiments are used to validate the time for positioning. Results show that by appropriate LED beam design, OPLL has a positioning error and time for positioning of 0.735 m and 187 ms which is 55.1% lower and 1.2 times faster than existing multiple LED estimation model proximity systems
- …
