119 research outputs found
Helicity-selective phase-matching and quasi-phase matching of circularly polarized high-order harmonics: Towards chiral attosecond pulses
Phase matching of circularly polarized high-order harmonics driven by counter-rotating bi-chromatic lasers was recently predicted theoretically and demonstrated experimentally. In that work, phase matching was analyzed by assuming that the total energy, spin angular momentum and linear momentum of the photons participating in the process are conserved. Here we propose a new perspective on phase matching of circularly polarized high harmonics. We derive an extended phase matching condition by requiring a new propagation matching condition between the classical vectorial bi-chromatic laser pump and harmonics fields. This allows us to include the influence of the laser pulse envelopes on phase matching. We find that the helicity dependent phase matching facilitates generation of high harmonics beams with a high degree of chirality. Indeed, we present an experimentally measured chiral spectrum that can support a train of attosecond pulses with a high degree of circular polarization. Moreover, while the degree of circularity of the most intense pulse approaches unity, all other pulses exhibit reduced circularity. This feature suggests the possibility of using a train of attosecond pulses as an isolated attosecond probe for chiral-sensitive experiments
Picosecond ionization dynamics in femtosecond filaments at high pressures
We investigate the plasma dynamics inside a femtosecond-pulse-induced filament generated in an argon gas for a wide range of pressures up to 60 bar. At higher pressures, we observe ionization immediately following a pulse, with up to a threefold increase in the electron density within 30 ps after the filamentary propagation of a femtosecond pulse. Our study suggests that this picosecond evolution can be attributed to collisional ionization including Penning and associative ionizations and electron-impact ionization of excited atoms generated during the pulse. The dominance of excited atoms over ionized atoms at the end of the pulse also indicates an intrapulse inhibition of avalanche ionization. This delayed ionization dynamics provides evidence for diagnosing atomic and molecular excitation and ionization in intense laser interaction with high-pressure gases
Electron correlation and interference effects in strong-field processes
Several correlation and interference effects in strong-field physics are
investigated. We show that the interference of continuum wave packets can be
the dominant mechanism of high-harmonic generation (HHG) in the
over-the-barrier regime. Next, we combine HHG with resonant x-ray excitation to
force the recolliding continuum electron to recombine with a core hole rather
than the valence hole from that it was previously tunnel ionized. The scheme
opens up perspectives for nonlinear xuv physics, attosecond x-ray pulses, and
spectroscopy of core orbitals. Then, a method is proposed to generate
attochirp-free harmonic pulses by engineering the appropriate electron wave
packet. Finally, resonant photoionization mechanisms involving two atoms are
discussed which can dominate over the direct single-atom ionization channel at
interatomic distances in the nanometer range.Comment: to be published in Springer Proceedings "Multiphoton Processes and
Attosecond Physics
Generation of bright isolated attosecond soft X-ray pulses driven by multicycle midinfrared lasers.
[EN]High harmonic generation driven by femtosecond lasers makes it possible to capture the fastest dynamics in molecules and materials. However, to date the shortest subfemtosecond (attosecond, 10-18 s) pulses have been produced only in the extreme UV region of the spectrum below 100 eV, which limits the range of materials and molecular systems that can be explored. Here we experimentally demonstrate a remarkable convergence of physics: when midinfrared lasers are used to drive high harmonic generation, the conditions for optimal bright, soft X-ray generation naturally coincide with the generation of isolated attosecond pulses. The temporal window over which phase matching occurs shrinks rapidly with increasing driving laser wavelength, to the extent that bright isolated attosecond pulses are the norm for 2-ÎĽm driving lasers. Harnessing this realization, we experimentally demonstrate the generation of isolated soft X-ray attosecond pulses at photon energies up to 180 eV for the first time, to our knowledge, with a transform limit of 35 attoseconds (as), and a predicted linear chirp of 300 as. Most surprisingly, advanced theory shows that in contrast with as pulse generation in the extreme UV, long-duration, 10-cycle, driving laser pulses are required to generate isolated soft X-ray bursts efficiently, to mitigate group velocity walk-off between the laser and the X-ray fields that otherwise limit the conversion efficiency. Our work demonstrates a clear and straightforward approach for robustly generating bright isolated attosecond pulses of electromagnetic radiation throughout the soft X-ray region of the spectrum
Bright Coherent Ultrahigh Harmonics in the keV X-ray Regime from Mid-Infrared Femtosecond Lasers
High-harmonic generation (HHG) traditionally combines ~100 near-infrared laser photons to generate bright, phase-matched, extreme ultraviolet beams when the emission from many atoms adds constructively. Here, we show that by guiding a mid-infrared femtosecond laser in a high-pressure gas, ultrahigh harmonics can be generated, up to orders greater than 5000, that emerge as a bright supercontinuum that spans the entire electromagnetic spectrum from the ultraviolet to more than 1.6 kilo–electron volts, allowing, in principle, the generation of pulses as short as 2.5 attoseconds. The multiatmosphere gas pressures required for bright, phase-matched emission also support laser beam self-confinement, further enhancing the x-ray yield. Finally, the x-ray beam exhibits high spatial coherence, even though at high gas density the recolliding electrons responsible for HHG encounter other atoms during the emission process.The experimental work was funded by a National Security Science and Engineering Faculty Fellowship, and the NSF Center for EUV Science and Technology. A.G., A.J.-B., M.M.M., H.C.K. and A. Becker acknowledge support for theory from the U.S. Air Force Office of Scientific Research (grant no. FA9550-10-1-0561); A. Baltuška acknowledges support from Austrian Science Fund (FWF, grant no. U33-16) and the Austrian Research Promotion Agency (FFG, Project 820831 UPLIT); and C.H.-G. and L.P. acknowledge support from Junta de Castilla y León, Spanish MINECO (CSD2007-00013 and FIS2009-09522), and from Centro de Láseres Pulsados, CLPU. T.P., M.-C.C., A. Bahabad, M.M.M. and H.C.K. have filed for a patent on “Method for phase-matched generation of coherent soft and hard X-rays using IR lasers,” U.S. patent application 61171783 (2008)
Ultrafast modulation of the chemical potential in BaFeAs by coherent phonons
Time- and angle-resolved extreme ultraviolet photoemission spectroscopy is
used to study the electronic structure dynamics in BaFeAs around the
high-symmetry points and . A global oscillation of the Fermi level
at the frequency of the (As) phonon mode is observed. It is argued that
this behavior reflects a modulation of the effective chemical potential in the
photoexcited surface region that arises from the high sensitivity of the band
structure near the Fermi level to the phonon mode combined with a low
electron diffusivity perpendicular to the layers. The results establish a novel
way to tune the electronic properties of iron pnictides: coherent control of
the effective chemical potential. The results further suggest that the
equilibration time for the effective chemical potential needs to be considered
in the ultrafast electronic structure dynamics of materials with weak
interlayer coupling.Comment: 6 pages, 3 figure
High flux coherent supercontinuum soft X-ray source driven by a single-stage 10 mJ, kHz, Ti:sapphire laser amplifier
We demonstrate the highest flux tabletop source of coherent soft X-rays to
date, driven by a single-stage 10 mJ Ti:sapphire regenerative amplifier at 1
kHz. We first down-convert the laser to 1.3 um using a parametric amplifier,
before up-converting it to soft X-rays using high harmonic generation in a
high-pressure, phase matched, hollow waveguide geometry. The resulting
optimally phase matched broadband spectrum extends to 200 eV, with a soft X-ray
photon flux of > 10^6 photons/pulse/1% bandwidth at 1 kHz, corresponding to >
10^9 photons/s/1% bandwidth, or approximately a three order-of-magnitude
increase compared with past work. Finally, using this broad bandwidth X-ray
source, we demonstrate X-ray absorption spectroscopy of multiple elements and
transitions in molecules in a single spectrum, with a spectral resolution of
0.25 eV, and with the ability to resolve the near edge fine structure.Comment: 9 pages, 3 figures, under Optics Express peer revie
Ultraviolet surprise: Efficient soft x-ray high-harmonic generation in multiply ionized plasmas
High-harmonic generation is a universal response of matter to strong femtosecond laser fields, coherently upconverting light to much shorter wavelengths. Optimizing the conversion of laser light into soft x-rays typically demands a trade-off between two competing factors. Because of reduced quantum diffusion of the radiating electron wave function, the emission from each species is highest when a short-wavelength ultraviolet driving laser is used. However, phase matching—the constructive addition of x-ray waves from a large number of atoms—favors longer-wavelength mid-infrared lasers.We identified a regime of high-harmonic generation driven by 40-cycle ultraviolet lasers in waveguides that can generate bright beams in the soft x-ray region of the spectrum, up to photon energies of 280 electron volts. Surprisingly, the high ultraviolet refractive indices of both neutral atoms and ions enabled effective phase matching, even in a multiply ionized plasma.We observed harmonics with very narrow linewidths, while calculations show that the x-rays emerge as nearly time-bandwidth–limited pulse trains of ~100 attoseconds.The experimental work was done at JILA, supported by Army Research Office grant WN11NF-13-1-0259, an NSF PFI AIR award, and U.S. Department of Energy (DOE) grant DE-SC0008803 (M.M.M., T.P., and H.C.K.). Theory was supported by a Marie Curie International Outgoing Fellowship within the EU Seventh Framework Programme for Research and Technological Development (2007–2013) under REA grant agreement 328334 (C.H.-G.); Junta de Castilla y León (SA116U13, UIC016) and MINECO (FIS2013-44174-P) (C.H.-G. and L.P.); NSF grants PHY-1125844 and PHY-1068706 and AFOSR MURI “Mathematical Modeling and Experimental Validation of Ultrafast Light-Matter Coupling associated with Filamentation in Transparent Media” grant FA9550-10-1-0561 (A.J.-B., R.J.L., X.G., A.L.G., M.M.M., and H.C.K.); Ministry of Science and Technology, Taiwan, grant 102-2112-M-007-025-MY3 (M.-C.C.); U.S. Department of Energy, Division of Chemical Sciences, Atomic, Molecular and Optical Sciences Program (A.B.); and DOE Office of Fusion Energy, HED Laboratory Plasmas program, grant AT5015033 (S.B.L., M.F., and J.A.G.). Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security LLC for DOE, National Nuclear Security Administration, under contract DE-AC52-07NA27344, LLNL-JRNL-676693. T.P., D.P., M.M.M., and H.C.K. have filed a patent on “Generation of VUV, EUV, X-ray Light Using VUV-UV-VIS Lasers,” U.S. patent application 61873794 (2013)/US 20150063385 (2015)
- …