358 research outputs found

    Fluid Particle Accelerations in Fully Developed Turbulence

    Full text link
    The motion of fluid particles as they are pushed along erratic trajectories by fluctuating pressure gradients is fundamental to transport and mixing in turbulence. It is essential in cloud formation and atmospheric transport, processes in stirred chemical reactors and combustion systems, and in the industrial production of nanoparticles. The perspective of particle trajectories has been used successfully to describe mixing and transport in turbulence, but issues of fundamental importance remain unresolved. One such issue is the Heisenberg-Yaglom prediction of fluid particle accelerations, based on the 1941 scaling theory of Kolmogorov (K41). Here we report acceleration measurements using a detector adapted from high-energy physics to track particles in a laboratory water flow at Reynolds numbers up to 63,000. We find that universal K41 scaling of the acceleration variance is attained at high Reynolds numbers. Our data show strong intermittency---particles are observed with accelerations of up to 1,500 times the acceleration of gravity (40 times the root mean square value). Finally, we find that accelerations manifest the anisotropy of the large scale flow at all Reynolds numbers studied.Comment: 7 pages, 4 figure

    Wacker-oxidation of Ethylene over Pillared Layered Material Catalysts

    Get PDF
    This paper concerns the Wacker oxidation of ethylene by oxygen in the presence of water over supported Pd/VOx catalysts. High surface area porous supports were obtained from layer-structured materials, such as, montmorillonite (MT), laponite (LT) (smectites), and hydrotalcite (layered double hydroxide, LDH) by pillaring. Before introduction of Pd, supports MT and LDH were pillared by vanadia. The laponite was used in titania-pillared form (TiO2-LAP) as support of Pd/VOx active component. Acetaldehyde (AcH), acetic acid (AcOH) and CO2 were the products with yields and selectivities, depending on the reaction conditions and the properties of the applied catalyst. Under comparable conditions the pillared smectite catalysts gave higher AcH yield than the pillared LDH catalyst. UV vis spectroscopic examination suggested that the pillared smectites contained polymeric chains of VO4, whereas only isolated monomeric VO4 species were present in the pillared LDH. The higher catalytic activity in the Wacker oxidation was attributed to the more favorable redox property of the polymeric than of the monomeric vanadia. The V3+ ions in the polymeric species can reduce O2 to O2- ions, whereas the obtained V5+ ions are ready to pass over O to Pd0 to generate PdO whereon the oxidation of the ethylene proceeds

    Contraceptive methods and use by women aged 35 and over: A qualitative study of perspectives

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>More than 30% of the pregnancies in women aged 35 and over are unintended. This paper compares perceptions about contraceptive methods and use among women with and without an unintended pregnancy after turning age 35.</p> <p>Methods</p> <p>Semi-structured, in-depth interviews were conducted with 17 women. They were all 35 to 49 years old, regularly menstruating, sexually active, not sterilized, not desiring a pregnancy in the near future, and at least 3 months postpartum. We purposely sampled for women who had had at least one unintended pregnancy after age 35 (n = 9) and women who did not (n = 8). We assessed partnership, views of pregnancy and motherhood, desired lifestyle, perceived advantages and disadvantages of using and obtaining currently available well-known reversible contraceptives in the U.S. ''We also assessed contraceptive methods used at any time during their reproductive years, including current method use and, if appropriate, circumstances surrounding an unintended pregnancy after age 35.'' Each interview was taped and transcribed verbatim. Data were analyzed using Grounded Theory. Analysis focused on partnership, views of pregnancy, motherhood, desired lifestyle and perceived advantages and disadvantages of various reversible contraceptive methods.</p> <p>Results</p> <p>The women without an unintended pregnancy after age 35 were more likely to (1) use contraceptive methods that helped treat a medical condition, (2) consider pregnancy as dangerous, or (3) express concerns about the responsibilities of motherhood. The women who experienced an unintended pregnancy after age 35 were more likely to (1) report unstable partnerships, (2) perceive themselves at lower risk of pregnancy, or (3) report past experiences with unwanted contraceptive side effects. There was a greater likelihood a woman would choose a contraceptive method if it was perceived as easy to use, accessible, affordable and had minimal side effects.</p> <p>Conclusions</p> <p>Women's perspective on contraceptive use after age 35 varies. Public health messages and health providers' care can help women in this age group by reviewing their fertility risks, as well as all contraceptive methods and their associated side effects. The impact of such interventions on unintended pregnancy rates in this age group should be tested in other areas of evidence-based medicine.</p

    Transcriptional analysis of adipose tissue during development reveals depot-specific responsiveness to maternal dietary supplementation

    Get PDF
    Brown adipose tissue (BAT) undergoes pronounced changes after birth coincident with the loss of the BAT-specifc uncoupling protein (UCP)1 and rapid fat growth. The extent to which this adaptation may vary between anatomical locations remains unknown, or whether the process is sensitive to maternal dietary supplementation. We, therefore, conducted a data mining based study on the major fat depots (i.e. epicardial, perirenal, sternal (which possess UCP1 at 7 days), subcutaneous and omental) (that do not possess UCP1) of young sheep during the frst month of life. Initially we determined what effect adding 3% canola oil to the maternal diet has on mitochondrial protein abundance in those depots which possessed UCP1. This demonstrated that maternal dietary supplementation delayed the loss of mitochondrial proteins, with the amount of cytochrome C actually being increased. Using machine learning algorithms followed by weighted gene co-expression network analysis, we demonstrated that each depot could be segregated into a unique and concise set of modules containing co-expressed genes involved in adipose function. Finally using lipidomic analysis following the maternal dietary intervention, we confrmed the perirenal depot to be most responsive. These insights point at new research avenues for examining interventions to modulate fat development in early life

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Crystal Structure of PrgI-SipD: Insight into a Secretion Competent State of the Type Three Secretion System Needle Tip and its Interaction with Host Ligands

    Get PDF
    Many infectious Gram-negative bacteria, including Salmonella typhimurium, require a Type Three Secretion System (T3SS) to translocate virulence factors into host cells. The T3SS consists of a membrane protein complex and an extracellular needle together that form a continuous channel. Regulated secretion of virulence factors requires the presence of SipD at the T3SS needle tip in S. typhimurium. Here we report three-dimensional structures of individual SipD, SipD in fusion with the needle subunit PrgI, and of SipD:PrgI in complex with the bile salt, deoxycholate. Assembly of the complex involves major conformational changes in both SipD and PrgI. This rearrangement is mediated via a π bulge in the central SipD helix and is stabilized by conserved amino acids that may allow for specificity in the assembly and composition of the tip proteins. Five copies each of the needle subunit PrgI and SipD form the T3SS needle tip complex. Using surface plasmon resonance spectroscopy and crystal structure analysis we found that the T3SS needle tip complex binds deoxycholate with micromolar affinity via a cleft formed at the SipD:PrgI interface. In the structure-based three-dimensional model of the T3SS needle tip, the bound deoxycholate faces the host membrane. Recently, binding of SipD with bile salts present in the gut was shown to impede bacterial infection. Binding of bile salts to the SipD:PrgI interface in this particular arrangement may thus inhibit the T3SS function. The structures presented in this study provide insight into the open state of the T3SS needle tip. Our findings present the atomic details of the T3SS arrangement occurring at the pathogen-host interface

    Search for R-parity-violating supersymmetry in events with four or more leptons in sqrt(s) =7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for new phenomena in final states with four or more leptons (electrons or muons) is presented. The analysis is based on 4.7 fb−1 of s=7  TeV \sqrt{s}=7\;\mathrm{TeV} proton-proton collisions delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in two signal regions: one that requires moderate values of missing transverse momentum and another that requires large effective mass. The results are interpreted in a simplified model of R-parity-violating supersymmetry in which a 95% CL exclusion region is set for charged wino masses up to 540 GeV. In an R-parity-violating MSUGRA/CMSSM model, values of m 1/2 up to 820 GeV are excluded for 10 < tan β < 40
    corecore