9 research outputs found

    Anisotropic Unruh temperatures

    Get PDF
    The relative entropy between very high-energy localized excitations and the vacuum, where both states are reduced to a spatial region, gives place to a precise definition of a local temperature produced by vacuum entanglement across the boundary. This generalizes the Unruh temperature of the Rindler wedge to arbitrary regions. The local temperatures can be read off from the short distance leading have a universal geometric expression that follows by solving a particular eikonal type equation in Euclidean space. This equation generalizes to any dimension the holomorphic property that holds in two dimensions. For regions of arbitrary shapes the local temperatures at a point are direction dependent. We compute their explicit expression for the geometry of a wall or strip.Fil: Arias, Raúl Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Casini, Horacio German. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Huerta, Marina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Pontello, Diego Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentin

    Relative entropy for coherent states from Araki formula

    Get PDF
    We make a rigorous computation of the relative entropy between the vacuum state and a coherent state for a free scalar in the framework of algebraic description of quantum field theory (AQFT). We study the case of the Rindler wedge. Previous calculations including path integral methods and computations from the lattice give a result for such relative entropy which involves integrals of expectation values of the energy-momentum stress tensor along the considered region. However, the stress tensor is in general nonunique. That means that if we start with some stress tensor, then we can "improve" it adding a conserved term without modifying the Poincaré charges. On the other hand, the presence of such an improving term affects the naive expectation for the relative entropy by a nonvanishing boundary contribution along the entangling surface. In other words, this means that there is an ambiguity in the usual formula for the relative entropy coming from the nonuniqueness of the stress tensor. The main motivation of this work is to solve this puzzle. We first show that all choices of stress tensor except the canonical one are not allowed by positivity and monotonicity of the relative entropy. Then we fully compute the relative entropy between the vacuum and a coherent state in the framework of AQFT using the Araki formula and the techniques of modular theory. After all, both results coincide and give the usual expression for the relative entropy calculated with the canonical stress tensor.Fil: Casini, Horacio German. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Grillo, Sergio Daniel. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Pontello, Diego Esteban. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro | Universidad Nacional de Cuyo. Instituto Balseiro. Archivo Histórico del Centro Atómico Bariloche e Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentin

    Entropy and modular Hamiltonian for a free chiral scalar in two intervals

    Get PDF
    We calculate the analytic form of the vacuum modular Hamiltonian for a two interval region and the algebra of a current j(x)=∂φ(x) corresponding to a chiral free scalar φ in d=2. We also compute explicitly the mutual information between the intervals. This model shows a failure of Haag duality for two intervals that translates into a loss of a symmetry property for the mutual information usually associated with modular invariance. Contrary to the case of a free massless fermion, the modular Hamiltonian turns out to be completely nonlocal. The calculation is done diagonalizing the density matrix by computing the eigensystem of a correlator kernel operator. These eigenvectors are obtained by a novel method that involves solving an equivalent problem for a holomorphic function in the complex plane where multiplicative boundary conditions are imposed on the intervals. Using the same technique we also rederive the free fermion modular Hamiltonian in a more transparent way.Fil: Arias, Raúl Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Casini, Horacio German. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Huerta, Marina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Pontello, Diego Esteban. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Logarithmic coefficient of the entanglement entropy of a Maxwell field

    Get PDF
    We elucidate the mismatch between the A-anomaly coefficient and the coefficient of the logarithmic term in the entanglement entropy of a Maxwell field. In contrast to the usual assumptions about the protection of renormalization group charges at the infrared, the logarithmic term is different for a free Maxwell field and a Maxwell field interacting with heavy charges. This is possible because of the presence of superselection sectors in the IR theory. However, the correction due to the coupling with charged vacuum fluctuations, that restores the anomaly coefficient, is independent of the precise UV dynamics. The problem is invariant under electromagnetic duality, and the solution requires both the existence of electric charges and magnetic monopoles. We use a real-time operator approach, but we also show how the results for the free and interacting fields are translated into an effective correction to the four-sphere partition function.Fil: Casini, Horacio German. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Huerta, Marina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Magán, Javier M.. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Pontello, Diego Esteban. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentin

    Anisotropic Unruh temperatures

    Get PDF
    The relative entropy between very high-energy localized excitations and the vacuum, where both states are reduced to a spatial region, gives place to a precise definition of a local temperature produced by vacuum entanglement across the boundary. This generalizes the Unruh temperature of the Rindler wedge to arbitrary regions. The local temperatures can be read off from the short distance leading have a universal geometric expression that follows by solving a particular eikonal type equation in Euclidean space. This equation generalizes to any dimension the holomorphic property that holds in two dimensions. For regions of arbitrary shapes the local temperatures at a point are direction dependent. We compute their explicit expression for the geometry of a wall or strip.Facultad de Ciencias ExactasInstituto de Física La Plat

    Magnetotransport properties of Fe0.8Ga0.2 films with stripe domains

    Get PDF
    Magnetotransport properties of Fe0.8Ga0.2 films with stripe domains are studied. The anisotropic magnetoresistance dominates the low field behavior, which is extremely dependent on the magnetic domains configuration. The magnetoresistance measured at different temperatures displays qualitatively different behaviors depending on the measurement configuration. When the stripes are oriented along the electric current, the low-field magnetoresistance changes sign with temperature, while when the stripes are perpendicular to the electric current the magnetoresistance curves are nearly temperature independent. A simple model considering parallel (series) conduction along (across) the stripes, plus the temperature dependence of anisotropic magnetoresistance and domains configuration, accounts for these experimental results.Fil: Granada, Mara. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Bustingorry, Sebastián. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Pontello, Diego Esteban. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Barturen, Mariana. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Universidad Nacional de Cuyo; Argentina. LIFAN, Laboratorio Internacional Franco-Argentino en Nanociencia; ArgentinaFil: Eddrief, M.. Laboratorio Internacional Franco-Argentino en Nanociencia; Argentina. Sorbonne University; Francia. Universite de Paris VI. Institut des Nanosciences de Paris; Francia. Centre National de la Recherche Scientifique; FranciaFil: Marangolo, M.. LIFAN, Laboratorio Internacional Franco-Argentino en Nanociencia; Argentina. Sorbonne University; Francia. Universite de Paris VI. Institut des Nanosciences de Paris; Francia. Centre National de la Recherche Scientifique; FranciaFil: Milano, Julian. Laboratorio Internacional Franco-Argentino en Nanociencia; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentin

    Holographic Wilson loops, Hamilton-Jacobi equation, and regularizations

    Get PDF
    The minimal area for surfaces whose borders are rectangular and circular loops are calculated using the Hamilton-Jacobi (HJ) equation. This amounts to solving the HJ equation for the value of the minimal area, without calculating the shape of the corresponding surface. This is done for bulk geometries that are asymptotically anti-de Sitter (AdS). For the rectangular contour, the HJ equation, which is separable, can be solved exactly. For the circular contour an expansion in powers of the radius is implemented. The HJ approach naturally leads to a regularization which consists in locating the contour away from the border. The results are compared with the ϵ-regularization which leaves the contour at the border and calculates the area of the corresponding minimal surface up to a diameter smaller than the one of the contour at the border. The results for the circular loop do not coincide if the expansion parameter is taken to be the radius of the contour at the border. It is shown that using this expansion parameter the ϵ-regularization leads to incorrect results for certain solvable non-AdS cases. However, if the expansion parameter is taken to be the radius of the minimal surface whose area is computed, then the results coincide with the HJ scheme. This is traced back to the fact that in the HJ case the expansion parameter for the area of a minimal surface is intrinsic to the surface; however, the radius of the contour at the border is related to the way one chooses to regularize in the ϵ-scheme the calculation of this area.Fil: Pontello, Diego Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Trinchero, Roberto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentin

    Entropic order parameters for the phases of QFT

    No full text
    We propose entropic order parameters that capture the physics of generalized symmetries and phases in QFT’s. We do it through an analysis of simple properties (additivity and Haag duality) of the net of operator algebras attached to space-time regions. We observe that different types of symmetries are associated with the breaking of these properties in regions of different non-trivial topologies. When such topologies are connected, we show that the non locally generated operators generate an Abelian symmetry group, and their commutation relations are fixed. The existence of order parameters with area law, like the Wilson loop for the confinement phase, or the ’t Hooft loop for the dual Higgs phase, is shown to imply the existence of more than one possible choice of algebras for the same underlying theory. A natural entropic order parameter arises by this non-uniqueness. We display aspects of the phases of theories with generalized symmetries in terms of these entropic order parameters. In particular, the connection between constant and area laws for dual order and disorder parameters is transparent in this approach, new constraints arising from conformal symmetry are revealed, and the algebraic origin of the Dirac quantization condition (and generalizations thereof) is described. A novel tool in this approach is the entropic certainty relation satisfied by dual relative entropies associated with complementary regions, which quantitatively relates the statistics of order and disorder parameters.Fil: Casini, Horacio German. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Huerta, Marina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Magán, Javier M.. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Pontello, Diego Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentin

    Entanglement entropy and superselection sectors. Part I. Global symmetries

    No full text
    Some quantum field theories show, in a fundamental or an effective manner, an alternative between a loss of duality for algebras of operators corresponding to complementary regions, or a loss of additivity. In this latter case, the algebra contains some operator that is not generated locally, in the former, the entropies of complementary regions do not coincide. Typically, these features are related to the incompleteness of the operator content of the theory, or, in other words, to the existence of superselection sectors. We review some aspects of the mathematical literature on superselection sectors aiming attention to the physical picture and focusing on the consequences for entanglement entropy (EE). For purposes of clarity, the whole discussion is divided into two parts according to the superselection sectors classification: The present part I is devoted to superselection sectors arising from global symmetries, and the forthcoming part II will consider those arising from local symmetries. Under this perspective, here restricted to global symmetries, we study in detail different cases such as models with finite and Lie group symmetry as well as with spontaneous symmetry breaking or excited states. We illustrate the general results with simple examples. As an important application, we argue the features of holographic entanglement entropy correspond to a picture of a sub-theory with a large number of superselection sectors and suggest some ways in which this identification could be made more precise.Fil: Casini, Horacio German. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Huerta, Marina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; ArgentinaFil: Magán, Javier M.. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Pontello, Diego Esteban. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentin
    corecore