6,176 research outputs found
Non-radial oscillation modes as a probe of density discontinuities in neutron stars
A phase transition occurring in the inner core of a neutron star could be
associated to a density discontinuity that would affect the frequency spectrum
of the non-radial oscillation modes in two ways. Firstly, it would produce a
softening of the equation of state, leading to more compact equilibrium
configurations and changing the frequency of the fundamental and pressure modes
of the neutron star. Secondly, a new non-zero frequency g-- mode would appear,
associated to each discontinuity. These discontinuity g--modes have typical
frequencies larger than those of g--modes previously studied in the literature
(thermal, core g-- modes, or g--modes due to chemical inhomogeneities in the
outer layers), and smaller than that of the fundamental mode; therefore they
should be distinguishable from the other modes of non radial oscillation. In
this paper we investigate how high density discontinuities change the frequency
spectrum of the non-radial oscillations, in the framework of the general
relativistic theory of stellar perturbations. Our purpose is to understand
whether a gravitational signal, emitted at the frequencies of the quasi normal
modes, may give some clear information on the equation of state of the neutron
star and, in particular, on the parameters that characterize the density
discontinuity. We discuss some astrophysical processes that may be associated
to the excitation of these modes, and estimate how much gravitational energy
should the modes convey to produce a signal detectable by high frequency
gravitational detectors.Comment: submitted to MNRA
Unstable g-modes in Proto-Neutron Stars
In this article we study the possibility that, due to non-linear couplings,
unstable g-modes associated to convective motions excite stable oscillating
g-modes. This problem is of particular interest, since gravitational waves
emitted by a newly born proto-neutron star pulsating in its stable g-modes
would be in the bandwidth of VIRGO and LIGO. Our results indicate that
nonlinear saturation of unstable modes occurs at relatively low amplitudes, and
therefore, even if there exists a coupling between stable and unstable modes,
it does not seem to be sufficiently effective to explain, alone, the excitation
of the oscillating g-modes found in hydrodynamical simulations.Comment: 10 pages, 3 figures, to appear on Class. Quant. Gra
The dish-Rankine SCSTPE program (Engineering Experiment no. 1)
Activities planned for phase 2 Of the Small Community Solar Thermal Power Experiment (PFDR) program are summarized with emphasis on a dish-Rankine point focusing distributed receiver solar thermal electric system. Major design efforts include: (1) development of an advanced concept indirect-heated receiver;(2) development of hardware and software for a totally unmanned power plant control system; (3) implementation of a hybrid digital simulator which will validate plant operation prior to field testing; and (4) the acquisition of an efficient organic Rankine cycle power conversion unit. Preliminary performance analyses indicate that a mass-produced dish-Rankine PFDR system is potentially capable of producing electricity at a levelized busbar energy cost of 60 to 70 mills per KWh and with a capital cost of about $1300 per KW
Explosion of white dwarfs harboring hybrid CONe cores
Recently, it has been found that off-centre carbon burning in a subset of
intermediate-mass stars does not propagate all the way to the center, resulting
in a class of hybrid CONe cores. Here, we consider the possibility that stars
hosting these hybrid CONe cores might belong to a close binary system and,
eventually, become white dwarfs accreting from a non-degenerate companion at
rates leading to a supernova explosion. We have computed the hydrodynamical
phase of the explosion of Chandrasekhar-mass white dwarfs harboring hybrid
cores, assuming that the explosion starts at the center, either as a detonation
(as may be expected in some degenerate merging scenarios) or as a deflagration
(that afterwards transitions into a delayed detonation). We assume these hybrid
cores are made of a central CO volume, of mass M(CO), surrounded by an ONe
shell. We show that, in case of a pure detonation, a medium-sized CO-rich
region, M(CO)<0.4 Msun, results in the ejection of a small fraction of the
mantle while leaving a massive bound remnant. Part of this remnant is made of
the products of the detonation, Fe-group nuclei, but they are buried in its
inner regions, unless convection is activated during the ensuing cooling and
shrinking phase of the remnant. In contrast, and somehow paradoxically, delayed
detonations do not leave remnants but for the minimum M(CO) we have explored,
M(CO)=0.2 Msun, and even in this case the remnant is as small as 0.13 Msun. The
ejecta produced by these delayed detonations are characterized by slightly
smaller masses of 56Ni and substantially smaller kinetic energies than obtained
for a delayed detonation of a 'normal' CO white dwarf. The optical emission
expected from these explosions would hardly match the observational properties
of typical Type Ia supernovae, although they make interesting candidates for
the subluminous class of SN2002cx-like or SNIax.Comment: Accepted for Astronomy and Astrophysics, 11 pages, 4 figure
Relativistic r-modes and shear viscosity
We derive the relativistic equations for stellar perturbations, including in
a consistent way shear viscosity in the stress-energy tensor, and we
numerically integrate our equations in the case of large viscosity. We consider
the slow rotation approximation, and we neglect the coupling between polar and
axial perturbations. In our approach, the frequency and damping time of the
emitted gravitational radiation are directly obtained. We find that,
approaching the inviscid limit from the finite viscosity case, the continuous
spectrum is regularized. Constant density stars, polytropic stars, and stars
with realistic equations of state are considered. In the case of constant
density stars and polytropic stars, our results for the viscous damping times
agree, within a factor two, with the usual estimates obtained by using the
eigenfunctions of the inviscid limit. For realistic neutron stars, our
numerical results give viscous damping times with the same dependence on mass
and radius as previously estimated, but systematically larger of about 60%.Comment: 8 pages, 7 figures, to appear in the Proceedings of the Albert
Einstein Century International Conference, Paris, France, July 200
Interaction of temperature and irradiance effects on photosynthetic acclimation in two accessions of Arabidopsis thaliana
The effect of temperature and irradiance during growth on photosynthetic traits of two accessions of Arabidopsis thaliana was investigated. Plants were grown at 10 and 22 °C, and at 50 and 300 μmol photons m(−2) s(−1) in a factorial design. As known from other cold-tolerant herbaceous species, growth of Arabidopsis at low temperature resulted in increases in photosynthetic capacity per unit leaf area and chlorophyll. Growth at high irradiance had a similar effect. However, the growth temperature and irradiance showed interacting effects for several capacity-related variables. Temperature effects on the ratio between electron transport capacity and carboxylation capacity were also different in low compared to high irradiance grown Arabidopsis. The carboxylation capacity per unit Rubisco, a measure for the in vivo Rubisco activity, was low in low irradiance grown plants but there was no clear growth temperature effect. The limitation of photosynthesis by the utilization of triose-phosphate in high temperature grown plants was less when grown at low compared to high irradiance. Several of these traits contribute to reduced efficiency of the utilization of resources for photosynthesis of Arabidopsis at low irradiance. The two accessions from contrasting climates showed remarkably similar capabilities of developmental acclimation to the two environmental factors. Hence, no evidence was found for photosynthetic adaptation of the photosynthetic apparatus to specific climatic conditions
Super-AGB Stars and their role as Electron Capture Supernova progenitors
We review the lives, deaths and nucleosynthetic signatures of intermediate
mass stars in the range approximately 6.5-12 Msun, which form super-AGB stars
near the end of their lives. We examine the critical mass boundaries both
between different types of massive white dwarfs (CO, CO-Ne, ONe) and between
white dwarfs and supernovae and discuss the relative fraction of super-AGB
stars that end life as either an ONe white dwarf or as a neutron star (or an
ONeFe white dwarf), after undergoing an electron capture supernova. We also
discuss the contribution of the other potential single-star channels to
electron-capture supernovae, that of the failed massive stars. We describe the
factors that influence these different final fates and mass limits, such as
composition, the efficiency of convection, rotation, nuclear reaction rates,
mass loss rates, and third dredge-up efficiency. We stress the importance of
the binary evolution channels for producing electron-capture supernovae. We
discuss recent nucleosynthesis calculations and elemental yield results and
present a new set of s-process heavy element yield predictions. We assess the
contribution from super-AGB star nucleosynthesis in a Galactic perspective, and
consider the (super-)AGB scenario in the context of the multiple stellar
populations seen in globular clusters. A brief summary of recent works on dust
production is included. Lastly we conclude with a discussion of the
observational constraints and potential future advances for study into these
stars on the low mass/high mass star boundary.Comment: 28 pages, 11 figures. Invited review for Publications of the
Astronomical Society of Australia, to be published in special issue on
"Electron Capture Supernovae". Submitte
Restos de grulla fósil en el avenc de na Corna, Artà
[spa] La abundancia de depósitos osíferos en las cavidades de Mallorca con restos fósiles de mamíferos endémicos como Myotragus, Hypnomys y Nesiotites, y la escasez de otras especies, hacen que el "Avenc de Na Corna" tenga un interés especial al ser hallados en él, restos de una grulla fósil, que hasta la fecha es la primera cita de esta ave en las islas y la península
- …