10 research outputs found
Rare processes and coherent phenomena in crystals
We study coherent enhancement of Coulomb excitation of high energy particles
in crystals. We develop multiple scattering theory description of coherent
excitation which consistently incorporates both the specific resonant
properties of particle-crystal interactions and the final/initial state
interaction effects typical of the diffractive scattering. Possible
applications to observation of induced radiative neutrino transitions are
discussed.Comment: 8 pages, LaTe
Anharmonic vs. relaxational sound damping in glasses: I. Brillouin scattering from densified silica
This series discusses the origin of sound damping and dispersion in glasses.
In particular, we address the relative importance of anharmonicity versus
thermally activated relaxation. In this first article, Brillouin-scattering
measurements of permanently densified silica glass are presented. It is found
that in this case the results are compatible with a model in which damping and
dispersion are only produced by the anharmonic coupling of the sound waves with
thermally excited modes. The thermal relaxation time and the unrelaxed velocity
are estimated.Comment: 9 pages with 7 figures, added reference
Probing the equation of state in the AGS energy range with 3-d hydrodynamics
The effect of (i) the phase transition between a quark gluon plasma (QGP) and
a hadron gas and (ii) the number of resonance degrees of freedom in the
hadronic phase on the single inclusive distributions of 16 different types of
produced hadrons for Au+Au collisions at AGS energies is studied.
We have used an exact numerical solution of the relativistic hydrodynamical
equations without free parameters which, because of its 3-d character,
constitutes a considerable improvement over the classical Landau solution.
Using two different equations of state (eos) - one containing a phase
transition from QGP to the Hadronic Phase and two versions of a purely hadronic
eos - we find that the first one gives an overall better description of the
Au+Au experimental data at energies.
We reproduce and analyse measured meson and proton spectra and also make
predictions for anti-protons, deltas, anti-deltas and hyperons. The low m_t
enhancement in pi- spectra is explained by baryon number conservation and
strangeness equilibration.
We also find that negative kaon data are more sensitive to the eos, as well
as the K-/pi- ratio. All hyperons and deltas are sensitive to the presence of a
phase transition in the forward rapidity region. Anti-protons, Omegas and heavy
anti-baryons are sensitive in the whole rapidity range.Comment: 25 pages (.tex) and 9 figures (.ps
Electromagnetic Dissociation as a Tool for Nuclear Structure and Astrophysics
Coulomb dissociation is an especially simple and important reaction
mechanism. Since the perturbation due to the electric field of the (target)
nucleus is exactly known, firm conclusions can be drawn from such measurements.
Electromagnetic matrixelements and astrophysical S-factors for radiative
capture processes can be extracted from experiments. We describe the basic
elements of the theory of nonrelativistic and relativistic electromagnetic
excitation with heavy ions. This is contrasted to electromagnetic excitation
with leptons (electrons), with their small electric charge and the absence of
strong interactions. We discuss various approaches to the study of higher order
electromagnetic effects and how these effects depend on the basic parameters of
the experiment. The dissociation of neutron halo nuclei is studied in a zero
range model using analytical methods. We also review ways how to treat nuclear
interactions, show their characteristics and how to avoid them (as far as
possible). We review the experimental results from a theoretical point of view.
Of special interest for nuclear structure physics is the appearence of low
lying electric dipole strength in neutron rich nuclei. Applications of Coulomb
dissociation to some selected radiative capture reactions relevant for nuclear
astrophysics are discussed. The Coulomb dissociation of 8B is relevant for the
solar neutrino problem. The potential of the method especially for future
investigations of (medium) heavy exotic nuclei for nuclear structure and
astrophysics is explored. We conclude that the Coulomb dissociation mechanism
is theoretically well understood, the potential difficulties are identified and
can be taken care of. Many interesting experiments have been done in this field
and many more are expected in the future.Comment: review article accepted for publication in "Prog. in Part. and Nucl.
Physics", 75 pages, 31 figure
Microscopic calculations of the excitation spectrum of one 3He impurity in liquid 4He
We calculate the chemical potential ¿0 and the effective mass m*/m3 of one 3He impurity in liquid 4He. First a variational wave function including two- and three-particle dynamical correlations is adopted. Triplet correlations bring the computed values of ¿0 very close to the experimental results. The variational estimate of m*/m3 includes also backflow correlations between the 3He atom and the particles in the medium. Different approximations for the three-particle distribution function give almost the same values for m*/m3. The variational approach underestimates m*/m3 by ~10% at all of the considered densities. Correlated-basis perturbation theory is then used to improve the wave function to include backflow around the particles of the medium. The perturbative series built up with one-phonon states only is summed up to infinite order and gives results very close to the variational ones. All the perturbative diagrams with two independent phonons have then been summed to compute m*/m3. Their contribution depends to some extent on the form used for the three-particle distribution function. When the scaling approximation is adopted, a reasonable agreement with the experimental results is achieved