310 research outputs found

    Contour dynamics model for electric discharges

    Full text link
    A contour dynamics model for electrical discharges is obtained and analyzed. The model is deduced as the asymptotic limit of the minimal streamer model for the propagation of electric discharges, in the limit of small electron diffusion. The dispersion relation for a non planar 2-D discharge is calculated. The development and propagation of finger-like patterns are studied and their main features quantified.Comment: 4 pages, 2 fi

    Constrained Reductions of 2D dispersionless Toda Hierarchy, Hamiltonian Structure and Interface Dynamics

    Full text link
    Finite-dimensional reductions of the 2D dispersionless Toda hierarchy, constrained by the ``string equation'' are studied. These include solutions determined by polynomial, rational or logarithmic functions, which are of interest in relation to the ``Laplacian growth'' problem governing interface dynamics. The consistency of such reductions is proved, and the Hamiltonian structure of the reduced dynamics is derived. The Poisson structure of the rationally reduced dispersionless Toda hierarchies is also derivedComment: 18 pages LaTex, accepted to J.Math.Phys, Significantly updated version of the previous submissio

    Electric discharge contour dynamics model: the effects of curvature and finite conductivity

    Full text link
    In this paper we present the complete derivation of the effective contour model for electrical discharges which appears as the asymptotic limit of the minimal streamer model for the propagation of electric discharges, when the electron diffusion is small. It consists of two integro-differential equations defined at the boundary of the plasma region: one for the motion and a second equation for the net charge density at the interface. We have computed explicit solutions with cylindrical symmetry and found the dispersion relation for small symmetry-breaking perturbations in the case of finite resistivity. We implement a numerical procedure to solve our model in general situations. As a result we compute the dispersion relation for the cylindrical case and compare it with the analytical predictions. Comparisons with experimental data for a 2-D positive streamers discharge are provided and predictions confirmed.Comment: 23 pages, 3 figure

    Diffusion-Limited Aggregation on Curved Surfaces

    Get PDF
    We develop a general theory of transport-limited aggregation phenomena occurring on curved surfaces, based on stochastic iterated conformal maps and conformal projections to the complex plane. To illustrate the theory, we use stereographic projections to simulate diffusion-limited-aggregation (DLA) on surfaces of constant Gaussian curvature, including the sphere (K>0K>0) and pseudo-sphere (K<0K<0), which approximate "bumps" and "saddles" in smooth surfaces, respectively. Although curvature affects the global morphology of the aggregates, the fractal dimension (in the curved metric) is remarkably insensitive to curvature, as long as the particle size is much smaller than the radius of curvature. We conjecture that all aggregates grown by conformally invariant transport on curved surfaces have the same fractal dimension as DLA in the plane. Our simulations suggest, however, that the multifractal dimensions increase from hyperbolic (K0K0) geometry, which we attribute to curvature-dependent screening of tip branching.Comment: 4 pages, 3 fig

    Unstable fingering patterns of Hele-Shaw flows as a dispersionless limit of the KdV hierarchy

    Full text link
    We show that unstable fingering patterns of two dimensional flows of viscous fluids with open boundary are described by a dispersionless limit of the KdV hierarchy. In this framework, the fingering instability is linked to a known instability leading to regularized shock solutions for nonlinear waves, in dispersive media. The integrable structure of the flow suggests a dispersive regularization of the finite-time singularities.Comment: Published versio

    Anomalous diffusion and anisotropic nonlinear Fokker-Planck equation

    Full text link
    We analyse a bidimensional nonlinear Fokker-Planck equation by considering an anisotropic case, whose diffusion coefficients are DxxθD_x \propto |x|^{-\theta} and DyyγD_y \propto |y|^{-\gamma} with θ,γR\theta, \gamma \in {\cal{R}}. In this context, we also investigate two situations with the drift force F(r,t)=(kxx,kyy)\vec{F}(\vec{r},t)=(-k_{x}x, -k_y y). The first one is characterized by kx/ky=(2+γ)/(2+θ)k_x/k_y=(2+\gamma)/(2+\theta) and the second is given by kx=kk_{x}=k and ky=0k_{y}=0. In these cases, we can verify an anomalous behavior induced in different directions by the drift force applied. The found results are exact and exhibit, in terms of the qq-exponentials, functions which emerge from the Tsallis formalism. The generalization for the DD-dimensional case is discussed.Comment: 6 pages, tex fil

    Logarithmic diffusion and porous media equations: a unified description

    Full text link
    In this work we present the logarithmic diffusion equation as a limit case when the index that characterizes a nonlinear Fokker-Planck equation, in its diffusive term, goes to zero. A linear drift and a source term are considered in this equation. Its solution has a lorentzian form, consequently this equation characterizes a super diffusion like a L\'evy kind. In addition is obtained an equation that unifies the porous media and the logarithmic diffusion equations, including a generalized diffusion equation in fractal dimension. This unification is performed in the nonextensive thermostatistics context and increases the possibilities about the description of anomalous diffusive processes.Comment: 5 pages. To appear in Phys. Rev.

    Bubble break-off in Hele-Shaw flows : Singularities and integrable structures

    Full text link
    Bubbles of inviscid fluid surrounded by a viscous fluid in a Hele-Shaw cell can merge and break-off. During the process of break-off, a thinning neck pinches off to a universal self-similar singularity. We describe this process and reveal its integrable structure: it is a solution of the dispersionless limit of the AKNS hierarchy. The singular break-off patterns are universal, not sensitive to details of the process and can be seen experimentally. We briefly discuss the dispersive regularization of the Hele-Shaw problem and the emergence of the Painlev\'e II equation at the break-off.Comment: 27 pages, 9 figures; typo correcte

    Laplacian Growth and Whitham Equations of Soliton Theory

    Full text link
    The Laplacian growth (the Hele-Shaw problem) of multi-connected domains in the case of zero surface tension is proven to be equivalent to an integrable systems of Whitham equations known in soliton theory. The Whitham equations describe slowly modulated periodic solutions of integrable hierarchies of nonlinear differential equations. Through this connection the Laplacian growth is understood as a flow in the moduli space of Riemann surfaces.Comment: 33 pages, 7 figures, typos corrected, new references adde

    Solutions For A Generalized Fractional Anomalous Diffusion Equation

    Get PDF
    In this paper, we investigate the solutions for a generalized fractional diffusion equation that extends some known diffusion equations by taking a spatial time-dependent diffusion coefficient and an external force into account, which subjects to the natural boundaries and the generic initial condition. We obtain explicit analytical expressions for the probability distribution and study the relation between our solutions and those obtained within the maximum entropy principle by using the Tsallis entropy.Comment: 10 pages, LaTeX, 3 figure
    corecore