19 research outputs found
Fast recognition of marine particles in underwater digital holography
The issue of fast recognition of marine particles in situ by digital holography methods is considered. An algorithm for the classification of marine particles by morphological features is proposed. Preliminary results and estimation of accuracy of the proposed algorithm are presented
Digital holographic camera for plankton monitoring
A submersible digital holographic camera for measuring plankton and other particles is described. The camera provides underwater recording of digital holograms of water volume containing plankton followed by automatic restoration of holographic images of plankton species, determination of their sizes, shapes, and concentrations, and their recognition and classification. Particles with sizes of 200 μm and larger are analyzed. The water volume registered per exposure is about 1 L. The special features of the software for automatic information retrieval from digital holograms are discussed. Examples of application of the camera as an integral part of the hardware-software complex for field measurements are given. Prospects for application of this complex for ecological monitoring are discussed. The recognition criterion of the digital holographic camera and the data volume and the averaging time required for obtaining statistically reliable data on plankton species are also given
The effect of volume inclusions of the ZnGeP2 single-crystal on the dispersion of the refraction index and the absorption coefficient in mid-IR and terahertz ranges of wavelengths
Volume filamentary inclusions in ZnGeP2 have been visualized using the digital holography method. The chemical composition of the filamentous volume inclusions Zn3P2 and Ge have been determined using the method of X-ray diffraction analysis. It is shown that the presence of volume inclusions in the ZnGeP2 singlecrystal leads to an increase in the reflection coefficient in the region of 12.5 μm. The dispersion dependences of the refractive index and the absorption coefficient of the studied ZnGeP2 samples at wavelengths of 300–1000 μm in the region of non-fundamental absorption have been obtained. It has been shown that the presence of volume inclusions in a single-crystal leads to an increase in the refractive index in the entire THz range under study by the value of Δnmax = 0,0008. The difference between absorption coefficients for the studied samples varies from Δα = 0.1 cm 1 to Δα = 0.15 cm 1 depending on the wavelength
Digital holography methods for visualization and identification of ZnGeP2 bulk defects
The volumetric filamentous inclusions in ZnGeP2 were visualized by digital holography, their characteristic sizes were determined, and their location in the sample volume was determined. The chemical composition of filamentous bulk inclusions – Zn3P2 and Ge-was determined by X-ray diffraction analysis. The influence of the second-phase inclusions (Zn3P2 and Ge) on the quasi optical characteristics (refractive index and absorption coefficient) in the resonant absorption band (12–12.5 microns) is established. The presence of bulk inclusions in the ZnGeP2 single crystal leads to an increase in the reflection coefficient in the region of 12.5 microns. The dispersion dependences of the refractive index and the absorption coefficient of the studied ZnGeP2 samples at wavelengths of 300–1000 microns in the non fundamental absorption region were obtained. The obtained experimental results confirm the assumption of the determining role of free carriers in the formation of dielectric losses in the wavelength range of 100–1000 microns. The hypothesis that one of the main sources of free carriers in ZnGeP2 is the matrix medium / inclusion interface of the second phase is confirmed.В ст. ошибочно: A. S. Bolshako
Assessment of fatigue damage to aircraft glass using digital holography methods
The purpose of this work is to test the digital holography method for determining the depth of fatigue surface defects of the "silver" type of aviation organic glass caused by cyclic mechanical overloads, as well as the impact of aggressive substances. To study the fatigue defects of aviation organic glass, a digital holographic camera was used, the configuration of which is an axial scheme for recording digital Gabor holograms. During the experiment, the possibility of using the digital holography method to determine the characteristic transverse dimensions of surface defects in aircraft glazing parts and longitudinal dimensions was shown. The work carried out and the created model of the digital holographic camera show the potential possibility of creating a method for checking with a given accuracy the elements of the aircraft glazing for the presence of surface damage and assessing their impact on flight safety
Fast recognition of marine particles in underwater digital holography
The issue of fast recognition of marine particles in situ by digital holography methods is considered. An algorithm for the classification of marine particles by morphological features is proposed. Preliminary results and estimation of accuracy of the proposed algorithm are presented
Quality control of ZnGeP2 single crystals using optical methods
A method for detection of subsurface defects in ZnGeP2 crystals is proposed. Evaluation of this method is performed and experimental results are presented
Physical principles of the method for determination of geometrical characteristics and particle recognition in digital holography
The physical principles of a method for determination of geometrical characteristics of particles and particle recognition based on the concepts of digital holography, followed by processing of the particle images reconstructed from the digital hologram, using the morphological parameter are reported. An example of application of this method for fast plankton particle recognition is given
Quality control of ZnGeP2 single crystals using optical methods
A method for detection of subsurface defects in ZnGeP2 crystals is proposed. Evaluation of this method is performed and experimental results are presented
Physical principles of the method for determination of geometrical characteristics and particle recognition in digital holography
The physical principles of a method for determination of geometrical characteristics of particles and particle recognition based on the concepts of digital holography, followed by processing of the particle images reconstructed from the digital hologram, using the morphological parameter are reported. An example of application of this method for fast plankton particle recognition is given