53 research outputs found

    Bronchial Secretory Immunoglobulin A Deficiency Correlates With Airway Inflammation and Progression of Chronic Obstructive Pulmonary Disease

    Get PDF
    Rationale: Although airway inflammation can persist for years after smoking cessation in patients with chronic obstructive pulmonary disease (COPD), the mechanisms of persistent inflammation are largely unknown

    Environmental and occupational bronchiolitis obliterans: new realityOutstanding questionsSearch strategy and selection criteria

    No full text
    Summary: Patients diagnosed with environmental/occupational bronchiolitis obliterans (BO) over the last 2 decades often present with an indolent evolution of respiratory symptoms without a history of high-level, acute exposure to airborne toxins. Exertional dyspnea is the most common symptom and standard clinical and radiographic evaluation can be non-diagnostic. Lung biopsies often reveal pathological abnormalities affecting all distal lung compartments. These modern cases of BO typically exhibit the constrictive bronchiolitis phenotype of small airway remodeling, along with lymphocytic inflammation. In addition, hypertensive-type remodeling of intrapulmonary vasculature, diffuse fibroelastosis of alveolar tissue, and fibrous thickening of visceral pleura are frequently present. The diagnosis of environmental/occupational BO should be considered in patients who present with subacute onset of exertional dyspnea and a history compatible with prolonged or recurrent exposure to environmental toxins. Important areas for future studies include development of less invasive diagnostic approaches and testing of novel agents for disease prevention and treatment

    An Alphavirus Replicon-Based Human Metapneumovirus Vaccine Is Immunogenic and Protective in Mice and Cotton Ratsâ–ż

    Get PDF
    Human metapneumovirus (hMPV) is a recently discovered paramyxovirus that causes upper and lower respiratory tract infections in infants, the elderly, and immunocompromised individuals worldwide. Here, we developed Venezuelan equine encephalitis virus replicon particles (VRPs) encoding hMPV fusion (F) or attachment (G) glycoproteins and evaluated the immunogenicity and protective efficacy of these vaccine candidates in mice and cotton rats. VRPs encoding hMPV F protein, when administered intranasally, induced F-specific virus-neutralizing antibodies in serum and immunoglobulin A (IgA) antibodies in secretions at the respiratory mucosa. Challenge virus replication was reduced significantly in both the upper and lower respiratory tracts following intranasal hMPV challenge in these animals. However, vaccination with hMPV G protein VRPs did not induce neutralizing antibodies or protect animals from hMPV challenge. Close examination of the histopathology of the lungs of VRP-MPV F-vaccinated animals following hMPV challenge revealed no enhancement of inflammation or mucus production. Aberrant cytokine gene expression was not detected in these animals. Together, these results represent an important first step toward the use of VRPs encoding hMPV F proteins as a prophylactic vaccine for hMPV

    Venezuelan Equine Encephalitis Virus Replicon Particles Encoding Respiratory Syncytial Virus Surface Glycoproteins Induce Protective Mucosal Responses in Mice and Cotton Ratsâ–ż

    Get PDF
    Respiratory syncytial virus (RSV) is an important viral pathogen that causes severe lower respiratory tract infection in infants, the elderly, and immunocompromised individuals. There are no licensed RSV vaccines to date. To prevent RSV infection, immune responses in both the upper and lower respiratory tracts are required. Previously, immunization with Venezuelan equine encephalitis virus replicon particles (VRPs) demonstrated effectiveness in inducing mucosal protection against various pathogens. In this study, we developed VRPs encoding RSV fusion (F) or attachment (G) glycoproteins and evaluated the immunogenicity and efficacy of these vaccine candidates in mice and cotton rats. VRPs, when administered intranasally, induced surface glycoprotein-specific virus neutralizing antibodies in serum and immunoglobulin A (IgA) antibodies in secretions at the respiratory mucosa. In addition, fusion protein-encoding VRPs induced gamma interferon (IFN-Îł)-secreting T cells in the lungs and spleen, as measured by reaction with an H-2Kd-restricted CD8+ T-cell epitope. In animals vaccinated with F protein VRPs, challenge virus replication was reduced below the level of detection in both the upper and lower respiratory tracts following intranasal RSV challenge, while in those vaccinated with G protein VRPs, challenge virus was detected in the upper but not the lower respiratory tract. Close examination of histopathology of the lungs of vaccinated animals following RSV challenge revealed no enhanced inflammation. Immunization with VRPs induced balanced Th1/Th2 immune responses, as measured by the cytokine profile in the lungs and antibody isotype of the humoral immune response. These results represent an important first step toward the use of VRPs encoding RSV proteins as a prophylactic vaccine for RSV

    Loss of polymeric immunoglobulin receptor expression is associated with lung tumourigenesis.

    No full text
    Polymeric immunoglobulin receptor (pIgR) expression is downregulated in lung cancer, but its implications in lung tumourigenesis remain unknown. We hypothesised that loss of pIgR expression occurs early, and is associated with cell proliferation and poor prognosis. pIgR expression was evaluated by immunohistochemistry in airways of patients with normal mucosa, pre-invasive lesions and invasive lesions, and correlated with clinical outcomes. 16-HBE and A549 cells stably transfected with pIgR were tested for proliferation, apoptosis and cell cycle progression. Immunostaining was strong in normal epithelium, but severely reduced in pre-invasive lesions and most lung cancers. Persistent expression was associated with younger age and adenocarcinoma subtype but not survival. pIgR overexpression significantly reduced A549 and 16-HBE proliferation. Growth inhibition was not due to cell cycle arrest, increased apoptosis or endoplasmic reticulum stress, but we observed altered expression of genes encoding for membrane proteins, including NOTCH3. Interestingly, NOTCH3 expression was inversely correlated with pIgR expression in cell lines and tissues. pIgR expression was lost in most lung cancers and pre-invasive bronchial lesions, suggesting that pIgR downregulation is an early event in lung tumourigenesis. pIgR overexpression in A549 and 16-HBE cells inhibited proliferation. Future investigations are required to determine the mechanisms by which pIgR contributes to cell proliferation

    Neutrophil-Derived IL-1 beta Impairs the Efficacy of NF-kappa B Inhibitors against Lung Cancer

    Get PDF
    Although epithelial NF-kappa B signaling is important for lung carcinogenesis, NF-kappa B inhibitors are ineffective for cancer treatment. To explain this paradox, we studied mice with genetic deletion of IK kappa beta in myeloid cells and found enhanced tumorigenesis in Kras(G12D) and urethane models of lung cancer. Myeloid-specific inhibition of NF-kappa B augmented pro-IL-1 beta processing by cathepsin G in neutrophils, leading to increased IL-1 beta and enhanced epithelial cell proliferation. Combined treatment with bortezomib, a proteasome inhibitor that blocks NF-kappa B activation, and IL-1 receptor antagonist reduced tumor formation and growth in vivo. In lung cancer patients, plasma IL-1 beta levels correlated with poor prognosis, and IL-1 beta increased following bortezomib treatment. Together, our studies elucidate an important role for neutrophils and IL-1 beta in lung carcinogenesis and resistance to NF-kappa B inhibitors

    Bronchial Secretory Immunoglobulin A Deficiency Correlates With Airway Inflammation and Progression of Chronic Obstructive Pulmonary Disease

    No full text
    Rationale: Although airway inflammation can persist for years after smoking cessation in patients with chronic obstructive pulmonary disease (COPD), the mechanisms of persistent inflammation are largely unknown. Objectives: We investigated relationships between bronchial epithelial remodeling, polymeric immunoglobulin receptor (pIgR) expression, secretory IgA (SIgA), airway inflammation, and mural remodeling in COPD. Methods: Lung tissue specimens and bronchoalveolar lavage were obtained from lifetime nonsmokers and former smokers with or without COPD. Epithelial structural changes were quantified by morphometric analysis. Expression of pIgR was determined by immunostaining and real-time polymerase chain reaction. Immunohistochemistry was performed for IgA, CD4 and CD8 lymphocytes, and cytomegalovirus and Epstein-Barr virus antigens. Total IgA and SIgA were measured by ELISA and IgA transcytosis was studied using cultured human bronchial epithelial cells. Measurements and Main Results: Areas of bronchial mucosa covered by normal pseudostratified ciliated epithelium were characterized by pIgR expression with SIgA present on the mucosal surface. In contrast, areas of bronchial epithelial remodeling had reduced pIgR expression, localized SIgA deficiency, and increased CD4(+) and CD8(+) lymphocyte infiltration. In small airways (<2 mm), these changes were associated with presence of herpesvirus antigens, airway wall remodeling, and airflow limitation in patients with COPD. Patients with COPD had reduced SIgA in bronchoalveolar lavage. Air–liquid interface epithelial cell cultures revealed that complete epithelial differentiation was required for normal pIgR expression and IgA transcytosis. Conclusions: Our findings indicate that epithelial structural abnormalities lead to localized SIgA deficiency in COPD airways. Impaired mucosal immunity may contribute to persistent airway inflammation and progressive airway remodeling in COPD
    • …
    corecore