515 research outputs found
Intracellular Drug Concentrations and Transporters: Measurement, Modeling, and Implications for the Liver
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/109769/1/cptclpt201378.pd
Espectroscopia infravermelha para a determinação de carbono do solo: perspectiva de um método economicamente viável e ambientalmente seguro.
O objetivo deste trabalho foi apresentar a utilidade das técnicas DRIFTS e NIRS na determinação quantitativa de carbono total (CT) determinado por combustão via seca e carbono orgânico (CORG) determinado por oxidação com dicromato de potássio, usando uma série heterogênea e representativa de solos do Brasil. Calibrações foram feitas para o número total das amostras e para as sub-populações de amostras com base no teor de C, classe de solo e grupo textural.bitstream/CNPAF/25440/1/comt_126.pd
ARTIFICIAL INTELLIGENCE FOR REAL-TIME MONITORING OF LOGS ON THE MADEIRA RIVER: A CASE STUDY ON JIRAU HYDROELECTRIC PLANT
The Jirau and Santo Antônio hydroelectric plants in Rondônia implemented a methodology using high-range cameras and artificial intelligence technology to address the challenge of managing logs transported by the river during floods. By applying machine learning techniques and neural networks, the system automatically monitors log transport and accumulation. Python 3, along with libraries like OpenCV, PIL, Numpy, and Pytorch, was utilized for efficient implementation. The methodology includes frame selection, log and debris segmentation, perspective correction, and log counting. Training was conducted using annotated images, and the detection process involved color segmentation, noise removal, and morphological operations. The calculated log and debris occupancy results were stored in a SQL database and presented on Power BI dashboards. The system aims to improve log management, ensuring power generation and ecological order are safeguarded
Clinical Relevance of Dissolution Testing in Quality by Design
Quality by design (QbD) has recently been introduced in pharmaceutical product development in a regulatory context and the process of implementing such concepts in the drug approval process is presently on-going. This has the potential to allow for a more flexible regulatory approach based on understanding and optimisation of how design of a product and its manufacturing process may affect product quality. Thus, adding restrictions to manufacturing beyond what can be motivated by clinical quality brings no benefits but only additional costs. This leads to a challenge for biopharmaceutical scientists to link clinical product performance to critical manufacturing attributes. In vitro dissolution testing is clearly a key tool for this purpose and the present bioequivalence guidelines and biopharmaceutical classification system (BCS) provides a platform for regulatory applications of in vitro dissolution as a marker for consistency in clinical outcomes. However, the application of these concepts might need to be further developed in the context of QbD to take advantage of the higher level of understanding that is implied and displayed in regulatory documentation utilising QbD concepts. Aspects that should be considered include identification of rate limiting steps in the absorption process that can be linked to pharmacokinetic variables and used for prediction of bioavailability variables, in vivo relevance of in vitro dissolution test conditions and performance/interpretation of specific bioavailability studies on critical formulation/process variables. This article will give some examples and suggestions how clinical relevance of dissolution testing can be achieved in the context of QbD derived from a specific case study for a BCS II compound
Photoproduction of phi(1020) mesons on the proton at large momentum transfer
The cross section for meson photoproduction on the proton has been
measured for the first time up to a four-momentum transfer -t = 4 GeV^2, using
the CLAS detector at the Thomas Jefferson National Accelerator Facility. At low
four-momentum transfer, the differential cross section is well described by
Pomeron exchange. At large four-momentum transfer, above -t = 1.8 GeV^2, the
data support a model where the Pomeron is resolved into its simplest component,
two gluons, which may couple to any quark in the proton and in the .Comment: 5 pages; 7 figure
A Real Space Description of Field Induced Melting in the Charge Ordered Manganites: II. the Disordered Case
We study the effect of A site disorder on magnetic field induced melting of
charge order (CO) in half doped manganites using a Monte-Carlo technique.
Strong A-site disorder destroys CO even without an applied field. At moderate
disorder, the zero field CO state survives but has several intriguing features
in its field response. Our spatially resolved results track the broadening of
the field melting transition due to disorder and explain the unusual dependence
of the melting scales on bandwidth and disorder. In combination with our
companion paper on field melting of charge order in clean systems we provide an
unified understanding of CO melting across all half doped manganites.Comment: 9 pages, pdflatex, 10 embedded png fig
Q^2 Dependence of the S_{11}(1535) Photocoupling and Evidence for a P-wave resonance in eta electroproduction
New cross sections for the reaction are reported for total
center of mass energy =1.5--2.3 GeV and invariant squared momentum transfer
=0.13--3.3 GeV. This large kinematic range allows extraction of new
information about response functions, photocouplings, and coupling
strengths of baryon resonances. A sharp structure is seen at 1.7 GeV.
The shape of the differential cross section is indicative of the presence of a
-wave resonance that persists to high . Improved values are derived for
the photon coupling amplitude for the (1535) resonance. The new data
greatly expands the range covered and an interpretation of all data with
a consistent parameterization is provided.Comment: 31 pages, 9 figure
Dependence of Quadrupole Strength in the Transition
Models of baryon structure predict a small quadrupole deformation of the
nucleon due to residual tensor forces between quarks or distortions from the
pion cloud. Sensitivity to quark versus pion degrees of freedom occurs through
the dependence of the magnetic (), electric (), and
scalar () multipoles in the
transition. We report new experimental values for the ratios
and over the range = 0.4-1.8 GeV, extracted from
precision data using a truncated multipole expansion.
Results are best described by recent unitary models in which the pion cloud
plays a dominant role.Comment: 5 pages, 5 figures, 1 table. To be published in Phys. Rev. Lett.
(References, figures and table updated, minor changes.
- …