8,285 research outputs found

    Demonstration of the Zero-Crossing Phasemeter with a LISA Test-bed Interferometer

    Full text link
    The Laser Interferometer Space Antenna (LISA) is being designed to detect and study in detail gravitational waves from sources throughout the Universe such as massive black hole binaries. The conceptual formulation of the LISA space-borne gravitational wave detector is now well developed. The interferometric measurements between the sciencecraft remain one of the most important technological and scientific design areas for the mission. Our work has concentrated on developing the interferometric technologies to create a LISA-like optical signal and to measure the phase of that signal using commercially available instruments. One of the most important goals of this research is to demonstrate the LISA phase timing and phase reconstruction for a LISA-like fringe signal, in the case of a high fringe rate and a low signal level. We present current results of a test-bed interferometer designed to produce an optical LISA-like fringe signal previously discussed in the literature.Comment: find minor corrections in the CQG versio

    Charge Management for Gravitational Wave Observatories using UV LEDs

    Full text link
    Accumulation of electrical charge on the end mirrors of gravitational wave observatories, such as the space-based LISA mission and ground-based LIGO detectors, can become a source of noise limiting the sensitivity of such detectors through electronic couplings to nearby surfaces. Torsion balances provide an ideal means for testing gravitational wave technologies due to their high sensitivity to small forces. Our torsion pendulum apparatus consists of a movable Au-coated Cu plate brought near a Au-coated Si plate pendulum suspended from a non-conducting quartz fiber. A UV LED located near the pendulum photoejects electrons from the surface, and a UV LED driven electron gun directs photoelectrons towards the pendulum surface. We have demonstrated both charging and discharging of the pendulum with equivalent charging rates of ∼\sim105e/s10^5 e/\mathrm{s}, as well as spectral measurements of the pendulum charge resulting in a white noise level equivalent to 3×105e/Hz3\times10^5 e/\sqrt{Hz}.Comment: 5 pages, submitted to PR

    Diurnal variations in optical depth at Mars: Observations and interpretations

    Get PDF
    Viking lander camera images of the Sun were used to compute atmospheric optical depth at two sites over a period of 1 to 1/3 martian years. The complete set of 1044 optical depth determinations is presented in graphical and tabular form. Error estimates are presented in detail. Optical depths in the morning (AM) are generally larger than in the afternoon (PM). The AM-PM differences are ascribed to condensation of water vapor into atmospheric ice aerosols at night and their evaporation in midday. A smoothed time series of these differences shows several seasonal peaks. These are simulated using a one-dimensional radiative convective model which predicts martial atmospheric temperature profiles. A calculation combining these profiles with water vapor measurements from the Mars Atmospheric Water Detector is used to predict when the diurnal variations of water condensation should occur. The model reproduces a majority of the observed peaks and shows the factors influencing the process. Diurnal variation of condensation is shown to peak when the latitude and season combine to warm the atmosphere to the optimum temperature, cool enough to condense vapor at night and warm enough to cause evaporation at midday

    A Demonstration of LISA Laser Communication

    Full text link
    Over the past few years questions have been raised concerning the use of laser communications links between sciencecraft to transmit phase information crucial to the reduction of laser frequency noise in the LISA science measurement. The concern is that applying medium frequency phase modulations to the laser carrier could compromise the phase stability of the LISA fringe signal. We have modified the table-top interferometer presented in a previous article by applying phase modulations to the laser beams in order to evaluate the effects of such modulations on the LISA science fringe signal. We have demonstrated that the phase resolution of the science signal is not degraded by the presence of medium frequency phase modulations.Comment: minor corrections found in the CQG versio

    Factors governing water condensation in the Martian atmosphere

    Get PDF
    Modeling results are presented suggesting a diurnal condensation cycle at high altitudes at some seasons and latitudes. In a previous paper, the use of atmospheric optical depth measurements at the Viking lander site to show diurnal variability of water condensation at different seasons of the Mars year was described. Factors influencing the amount of condensation include latitude, season, atmospheric dust content and water vapor content at the observation site. A one-dimensional radiative-convective model is used herein based on the diabatic heating routines under development for the Mars General Circulation Model. The model predicts atmospheric temperature profiles at any latitude, season, time of day and dust load. From these profiles and an estimate of the water vapor, one can estimate the maximum occurring at an early morning hour (AM) and the minimum in the late afternoon (PM). Measured variations in the atmospheric optical density between AM and PM measurements were interpreted as differences in AM and PM condensation

    High Sensitivity Torsion Balance Tests for LISA Proof Mass Modeling

    Get PDF
    We have built a highly sensitive torsion balance to investigate small forces between closely spaced gold coated surfaces. Such forces will occur between the LISA proof mass and its housing. These forces are not well understood and experimental investigations are imperative. We describe our torsion balance and present the noise of the system. A significant contribution to the LISA noise budget at low frequencies is the fluctuation in the surface potential difference between the proof mass and its housing. We present first results of these measurements with our apparatus.Comment: 6th International LISA Symposiu

    The case for a wet, warm climate on early Mars

    Get PDF
    Arguments are presented in support of the idea that Mars possessed a dense CO2 atmosphere and a wet, warm climate early in its history. The plausibility of a CO2 greenhouse is tested by formulating a simple model of the CO2 geochemical cycle on early Mars. By scaling the rate of silicate weathering on Earth, researchers estimated a weathering time constant of the order of several times 10 to the 7th power years for early Mars. Thus, a dense atmosphere could have existed for a geologically significant time period (approx. 10 to the 9th power years) only if atmospheric CO2 was being continuously resupplied. The most likely mechanism by which this could have been accomplished is the thermal decomposition of carbonate rocks induced directly or indirectly by intense, global scale volcanism

    Temporal Extent of Surface Potentials between Closely Spaced Metals

    Full text link
    Variations in the electrostatic surface potential between the proof mass and electrode housing in the space-based gravitational wave mission LISA is one of the largest contributors of noise at frequencies below a few mHz. Torsion balances provide an ideal testbed for investigating these effects in conditions emulative of LISA. Our apparatus consists of a Au coated Cu plate brought near a Au coated Si plate pendulum suspended from a thin W wire. We have measured a white noise level of 30, \uVhz above approximately 0.1, mHz, rising at lower frequencies, for the surface potential variations between these two closely spaced metals

    Inhomogeneous models of the Venus clouds containing sulfur

    Get PDF
    Based on the suggestion that elemental sulfur is responsible for the yellow color of Venus, calculations are compared at 3.4 microns of the reflectivity phase function of two sulfur containing inhomogeneous cloud models with that of a homogeneous model. Assuming reflectivity observations with 25% or less total error, comparison of the model calculations leads to a minimum detectable mass of sulfur equal to 7% of the mass of sulfuric acid for the inhomogeneous drop model. For the inhomogeneous cloud model the comparison leads to a minimum detectable mass of sulfur between 17% and 38% of the mass of the acid drops, depending upon the actual size of the large particles. It is concluded that moderately accurate 3.4 microns reflectivity observations are capable of detecting quite small amounts of elemental sulfur at the top of the Venus clouds
    • …
    corecore