789 research outputs found

    Collective behavior of heterogeneous neural networks

    Full text link
    We investigate a network of integrate-and-fire neurons characterized by a distribution of spiking frequencies. Upon increasing the coupling strength, the model exhibits a transition from an asynchronous regime to a nontrivial collective behavior. At variance with the Kuramoto model, (i) the macroscopic dynamics is irregular even in the thermodynamic limit, and (ii) the microscopic (single-neuron) evolution is linearly stable.Comment: 4 pages, 5 figure

    Collective chaos in pulse-coupled neural networks

    Get PDF
    We study the dynamics of two symmetrically coupled populations of identical leaky integrate-and-fire neurons characterized by an excitatory coupling. Upon varying the coupling strength, we find symmetry-breaking transitions that lead to the onset of various chimera states as well as to a new regime, where the two populations are characterized by a different degree of synchronization. Symmetric collective states of increasing dynamical complexity are also observed. The computation of the the finite-amplitude Lyapunov exponent allows us to establish the chaoticity of the (collective) dynamics in a finite region of the phase plane. The further numerical study of the standard Lyapunov spectrum reveals the presence of several positive exponents, indicating that the microscopic dynamics is high-dimensional.Comment: 6 pages, 5 eps figures, to appear on Europhysics Letters in 201

    Modified Kuramoto-Sivashinsky equation: stability of stationary solutions and the consequent dynamics

    Full text link
    We study the effect of a higher-order nonlinearity in the standard Kuramoto-Sivashinsky equation: \partial_x \tilde G(H_x). We find that the stability of steady states depends on dv/dq, the derivative of the interface velocity on the wavevector q of the steady state. If the standard nonlinearity vanishes, coarsening is possible, in principle, only if \tilde G is an odd function of H_x. In this case, the equation falls in the category of the generalized Cahn-Hilliard equation, whose dynamical behavior was recently studied by the same authors. Instead, if \tilde G is an even function of H_x, we show that steady-state solutions are not permissible.Comment: 4 page

    Collective Atomic Recoil Laser as a synchronization transition

    Get PDF
    We consider here a model previously introduced to describe the collective behavior of an ensemble of cold atoms interacting with a coherent electromagnetic field. The atomic motion along the self-generated spatially-periodic force field can be interpreted as the rotation of a phase oscillator. This suggests a relationship with synchronization transitions occurring in globally coupled rotators. In fact, we show that whenever the field dynamics can be adiabatically eliminated, the model reduces to a self-consistent equation for the probability distribution of the atomic "phases". In this limit, there exists a formal equivalence with the Kuramoto model, though with important differences in the self-consistency conditions. Depending on the field-cavity detuning, we show that the onset of synchronized behavior may occur through either a first- or second-order phase transition. Furthermore, we find a secondary threshold, above which a periodic self-pulsing regime sets in, that is immediately followed by the unlocking of the forward-field frequency. At yet higher, but still experimentally meaningful, input intensities, irregular, chaotic oscillations may eventually appear. Finally, we derive a simpler model, involving only five scalar variables, which is able to reproduce the entire phenomenology exhibited by the original model

    A new approach to partial synchronization in globally coupled rotators

    Full text link
    We develop a formalism to analyze the behaviour of pulse--coupled identical phase oscillators with a specific attention devoted to the onset of partial synchronization. The method, which allows describing the dynamics both at the microscopic and macroscopic level, is introduced in a general context, but then the application to the dynamics of leaky integrate-and-fire (LIF) neurons is analysed. As a result, we derive a set of delayed equations describing exactly the LIF behaviour in the thermodynamic limit. We also investigate the weak coupling regime by means of a perturbative analysis, which reveals that the evolution rule reduces to a set of ordinary differential equations. Robustness and generality of the partial synchronization regime is finally tested both by adding noise and considering different force fields.Comment: 5 pages, 3 eps figure

    Absence of stable collinear configurations in Ni(001)ultrathin films: canted domain structure as ground state

    Full text link
    Brillouin light scattering (BLS) measurements were performed for (17-120) Angstrom thick Cu/Ni/Cu/Si(001) films. A monotonic dependence of the frequency of the uniform mode on an in-plane magnetic field H was observed both on increasing and on decreasing H in the range (2-14) kOe, suggesting the absence of a metastable collinear perpendicular ground state. Further investigation by magneto-optical vector magnetometry (MOKE-VM) in an unconventional canted-field geometry provided evidence for a domain structure where the magnetization is canted with respect to the perpendicular to the film. Spin wave calculations confirm the absence of stable collinear configurations.Comment: 6 pages, 3 figures (text, appendix and 1 figure added

    Fracture precursors in disordered systems

    Full text link
    A two-dimensional lattice model with bond disorder is used to investigate the fracture behaviour under stress-controlled conditions. Although the cumulative energy of precursors does not diverge at the critical point, its derivative with respect to the control parameter (reduced stress) exhibits a singular behaviour. Our results are nevertheless compatible with previous experimental findings, if one restricts the comparison to the (limited) range accessible in the experiment. A power-law avalanche distribution is also found with an exponent close to the experimental values.Comment: 4 pages, 5 figures. Submitted to Europhysics Letter

    Self-Consistent Mode-Coupling Approach to 1D Heat Transport

    Full text link
    In the present Letter we present an analytical and numerical solution of the self-consistent mode-coupling equations for the problem of heat conductivity in one-dimensional systems. Such a solution leads us to propose a different scenario to accomodate the known results obtained so far for this problem. More precisely, we conjecture that the universality class is determined by the leading order of the nonlinear interaction potential. Moreover, our analysis allows us determining the memory kernel, whose expression puts on a more firm basis the previously conjectured connection between anomalous heat conductivity and anomalous diffusion.Comment: Submitted to Physical Review

    Dynamic model of fiber bundles

    Full text link
    A realistic continuous-time dynamics for fiber bundles is introduced and studied both analytically and numerically. The equation of motion reproduces known stationary-state results in the deterministic limit while the system under non-vanishing stress always breaks down in the presence of noise. Revealed in particular is the characteristic time evolution that the system tends to resist the stress for considerable time, followed by sudden complete rupture. The critical stress beyond which the complete rupture emerges is also obtained

    Quantum walks of correlated particles

    Get PDF
    Quantum walks of correlated particles offer the possibility to study large-scale quantum interference, simulate biological, chemical and physical systems, and a route to universal quantum computation. Here we demonstrate quantum walks of two identical photons in an array of 21 continuously evanescently-coupled waveguides in a SiOxNy chip. We observe quantum correlations, violating a classical limit by 76 standard deviations, and find that they depend critically on the input state of the quantum walk. These results open the way to a powerful approach to quantum walks using correlated particles to encode information in an exponentially larger state space
    • …
    corecore