469 research outputs found

    GSTA1*-69C/T and GSTO2*N142D as asthma- and allergy-related risk factors in Italian adult patients.

    Get PDF
    1. Asthma and allergies are characterized by variable and subjective symptoms influenced by many genes, molecular mechanisms and environmental factors. The presence of inflammation and oxidative stress in the airways are important biochemical features of asthma and respiratory allergies. Glutathione Stransferase (GSTs) enzymes play an important role in cellular protection against inflammation, and functional genetic polymorphisms in GST genes show a significant association with asthma and allergy risk. Specifically, our previous study on asthmatic children highlighted GSTA1 and GSTO2 as novel susceptibility loci for asthma. 2. In the present study we focused our attention on GSTA1*-69C/T (rs3957357) and GSTO2*N142D (rs156697) polymorphisms to confirm our previous results in an independent adult study population and to clarify whether GSTA1 and GSTO2 gene polymorphisms are involved in a non-discriminative pathway towards asthma and respiratory allergy. 3. To accomplish this, we recruited 103 patients with respiratory allergies, 199 patients with asthma and 200 healthy controls. Genomic DNA extracted from buccal cells was screened for GSTA1*-69C/T and GSTO2*N142D single nucleotide polymorphisms. 4. The GSTA1*-69T and GSTO2*D142 variants are both associated with a significantly increased risk of asthma, whereas only GSTA1*-69C/T is significantly associated with allergies. These outcomes confirm the involvement of GSTO2 loci in asthma and suggest that GSTA1 is a common risk factor for asthma and allergies

    Human pharmacogenomic variation of antihypertensive drugs: from population genetics to personalized medicine.

    Get PDF
    AIM: To investigate the human pharmacogenetic variation related to antihypertensive drugs, providing a survey of functional interpopulation differences in hypertension pharmacogenes. MATERIALS & METHODS: The study was divided into two stages. In the first stage, we analyzed 1249 variants located in 57 hypertension pharmacogenes. This first-stage analysis confirmed that geographic origin strongly affects hypertension pharmacogenomic variation and that 31 pharmacogenes are geographically differentiated. In the second stage, we focused our attention on the ethnic-differentiated pharmacogenes, investigating 55,521 genetic variants. In silico analyses were performed to predict the effect of genetic variation. RESULTS: Our analyses indicated functional interpopulation differences, suggesting insight into the mechanisms of antihypertensive drug response. Moreover, our data suggested that rare variants mainly determine the functionality of genes related to antihypertensive drugs. CONCLUSION: Our study provided important knowledge about the genetics of the antihypertensive drug response, suggesting that next-generation sequencing technologies may develop reliable pharmacogenetic tests for antihypertensive drugs

    In silico analysis of TTR gene (coding and non-coding regions, and interactive network) and its implications in transthyretin-related amyloidosis.

    Get PDF
    Introduction: Transthyretin (TTR)-related amyloidosis is a life-threatening disease. Currently, several questions about the pathogenic mechanisms of TTR-related amyloidosis remain unanswered. Methods: We have investigated various TTR-related issues using different in silico approaches. Results: Using an amino acid similarity-based analysis, we have indicated the most relevant TTR secondary structures in determining mutation impact. Our amyloidogenic propensity analysis of TTR missense substitutions has highlighted a similar pattern for wild-type and mutated TTR amino b acid sequences. However, some mutations present differences with respect to the general distribution. We have identified non-coding variants in cis-regulatory elements of the TTR gene, and our analysis on V122I-related haplotypes has indicated differences in non-coding regulatory variants, suggesting differences among V122I carriers. The analysis of methylation status indicated CpG sites that may affect TTR expression. Finally, our interactive network analysis revealed functional partners of TTR that may play a modifier role in the pathogenesis of TTR-related amyloidosis. Discussion and conclusion: Our data provided new insights into the pathogenesis of TTR-related amyloidosis that, if they were to be confirmed through experimental investigations, could significantly improve our understanding of the disease

    Haplotype differences for copy number variants in the 22q11.23 region among human populations: a pigmentation-based model for selective pressure.

    Get PDF
    Two gene clusters are tightly linked in a narrow region of chromosome 22q11.23: the macrophage migration inhibitory factor (MIF) gene family and the glutathione S-transferase theta class. Within 120 kb in this region, two 30-kb deletions reach high frequencies in human populations. This gives rise to four haplotypic arrangements, which modulate the number of genes in both families. The variable patterns of linkage disequilibrium (LD) between these copy number variants (CNVs) in diverse human populations remain poorly understood. We analyzed 2469 individuals belonging to 27 human populations with different ethnic origins. Then we correlated the genetic variability of 22q11.23 CNVs with environmental variables. We confirmed an increasing strength of LD from Africa to Asia and to Europe. Further, we highlighted strongly significant correlations between the frequency of one of the haplotypes and pigmentation-related variables: skin color (R2=0.675, P<0.001), distance from the equator (R2=0.454, P<0.001), UVA radiation (R2=0.439, P<0.001), and UVB radiation (R2=0.313, P=0.002). The fact that all MIF-related genes are retained on this haplotype and the evidences gleaned from experimental systems seem to agree with the role of MIF-related genes in melanogenesis. As such, we propose a model that explains the geographic and ethnic distribution of 22q11.23 CNVs among human populations, assuming that MIF-related gene dosage could be associated with adaptation to low UV radiatio

    Association between the c. 2495 A>G ATP7B Polymorphism and Sporadic Alzheimer's Disease

    Get PDF
    Nonceruloplasmin-bound copper (“free”) is reported to be elevated in Alzheimer's disease (AD). In Wilson's disease (WD) Cu-ATPase 7B protein tightly controls free copper body levels. To explore whether the ATP7B gene harbours susceptibility loci for AD, we screened 180 AD chromosomes for sequence changes in exons 2, 5, 8, 10, 14, and 16, where most of the Mediterranean WD-causing mutations lie. No WD mutation, but sequence changes corresponding to c.1216 T>G Single-Nucleotide Polymorphism (SNP) and c.2495 A>G SNP were found. Thereafter, we genotyped 190 AD patients and 164 controls for these SNPs frequencies estimation. Logistic regression analyses revealed either a trend for the c.1216 SNP (P = .074) or a higher frequency for c.2495 SNP of the GG genotype in patients, increasing the probability of AD by 74% (P = .028). Presence of the GG genotype in ATP7B c.2495 could account for copper dysfunction in AD which has been shown to raise the probability of the disease

    Pengaruh Kuat Arus Dan Waktu Pengelasan Pada Proses Las Titik (Spot Welding) Terhadap Kekuatan Tarik Dan Mikrostuktur Hasil Las Dari Baja Fasa Ganda (Feritte-Martensite)

    Full text link
    This research was conducted to investigate the appropiate spot welding variable to get the maximum tensile strength. The highest of tensile strength referred as good quality of weldment.The plate was made from low carbon steel with phase ferrite and martensite. The current of welding used 0.9 kA, 1.6 kA, dan 1.85 kA with welding time were 0.25, 0.5 , 0.75 and 1 second. Mechanical properties testing done involved tensile strength to know shear strength of weld joint. Microstructure test used optical microscope.The results show that spot welding with thecurrent of 1.85kA and welding time of 1 second has the highest tensile strength (about 237.04N/mm2). On the other hand, the lowest tensile strength (150 N/mm2) was produced by combination of 0.9 kA and 0.25 second welding time. It was caused by recrystallization phasedeformation on steel

    Decoy peptide targeted to Toll-IL-1R domain inhibits LPS and TLR4-active metabolite morphine-3 glucuronide sensitization of sensory neurons

    Get PDF
    Accumulating evidence indicates that Toll-like receptor (TLR) signaling adapter protein interactions with Toll/Interleukin-1 Receptor (TIR) domains present in sensory neurons may modulate neuropathic pain states. Following ligand interaction with TLRs, TIR serves to both initiate intracellular signaling and facilitate recruitment of signaling adapter proteins to the intracytoplasmic domain. Although TLR TIR is central to a number of TLR signaling cascades, its role in sensory neurons is poorly understood. In this study we investigated the degree to which TLR TIR decoy peptide modified to include a TAT sequence (Trans-Activator of Transcription gene in HIV; TAT-4BB) affected LPS-induced intracellular calcium flux and excitation in sensory neurons, and behavioral changes due to TLR4 active metabolite, morphine-3-glucuronide (M3G) exposure in vivo. TAT-4BB inhibited LPS-induced calcium changes in a majority of sensory neurons and decreased LPS-dependent neuronal excitability in small diameter neurons. Acute systemic administration of the TAT-4BB reversed M3G-induced tactile allodynia in a dose-dependent manner but did not affect motor activity, anxiety or responses to noxious thermal stimulus. These data suggest that targeting TLR TIR domains may provide novel pharmacological targets to reduce or reverse TLR4-dependent pain behavior in the rodent

    CYP2D6 Genetic Variation and Antipsychotic-Induced Weight Gain:A Systematic Review and Meta-Analysis

    Get PDF
    BACKGROUND: Antipsychotic-induced weight gain is a contributing factor in the reduced life expectancy reported amongst people with psychotic disorders. CYP2D6 is a liver enzyme involved in the metabolism of many commonly used antipsychotic medications. We investigated if CYP2D6 genetic variation influenced weight or BMI among people taking antipsychotic treatment. METHODS: We conducted a systematic review and a random effects meta-analysis of publications in Pubmed, Embase, PsychInfo, and CENTRAAL that had BMI and/or weight measurements of patients on long-term antipsychotics by their CYP2D6-defined metabolic groups (poor, intermediate, normal/extensive, and ultra-rapid metabolizers, UMs). RESULTS: Twelve studies were included in the systematic review. All cohort studies suggested that the presence of reduced-function or non-functional alleles for CYP2D6 was associated with greater antipsychotic-induced weight gain, whereas most cross-sectional studies did not find any significant associations. Seventeen studies were included in the meta-analysis with clinical data of 2,041 patients, including 93 poor metabolizers (PMs), 633 intermediate metabolizers (IMs), 1,272 normal metabolizers (NMs), and 30 UMs. Overall, we did not find associations in any of the comparisons made. The estimated pooled standardized differences for the following comparisons were (i) PM versus NM; weight = –0.07 (95%CI: –0.49 to 0.35, p = 0.74), BMI = 0.40 (95%CI: –0.19 to 0.99, p = 0.19). (ii) IM versus NM; weight = 0.09 (95% CI: –0.04 to 0.22, p = 0.16) and BMI = 0.09 (95% CI: –0.24 to 0.41, p = 0.60). (iii) UM versus EM; weight = 0.01 (95% CI: –0.37 to 0.40, p = 0.94) and BMI = –0.08 (95%CI: –0.57 to 0.42, p = 0.77). CONCLUSION: Our systematic review of cohort studies suggested that CYP2D6 poor metabolizers have higher BMI than normal metabolizers, but the data of cross-sectional studies and the meta-analysis did not show this association. Although our review and meta-analysis constitutes one of the largest studies with comprehensively genotyped samples, the literature is still limited by small numbers of participants with genetic variants resulting in poor or UMs status. We need further studies with larger numbers of extreme metabolizers to establish its clinical utility in antipsychotic treatment. CYP2D6 is a key gene for personalized prescribing in mental health
    corecore