24 research outputs found

    Human Body–Electrode Interfaces for Wide-Frequency Sensing and Communication: A Review

    Get PDF
    Several on-body sensing and communication applications use electrodes in contact with the human body. Body–electrode interfaces in these cases act as a transducer, converting ionic current in the body to electronic current in the sensing and communication circuits and vice versa. An ideal body–electrode interface should have the characteristics of an electrical short, i.e., the transfer of ionic currents and electronic currents across the interface should happen without any hindrance. However, practical body–electrode interfaces often have definite impedances and potentials that hinder the free flow of currents, affecting the application’s performance. Minimizing the impact of body–electrode interfaces on the application’s performance requires one to understand the physics of such interfaces, how it distorts the signals passing through it, and how the interface-induced signal degradations affect the applications. Our work deals with reviewing these elements in the context of biopotential sensing and human body communication

    The timing of strike-slip shear along the Ranong and Khlong Marui faults, Thailand

    Get PDF
    The timing of shear along many important strike-slip faults in Southeast Asia, such as the Ailao Shan-Red River, Mae Ping and Three Pagodas faults, is poorly understood. We present 40Ar/39Ar, U-Pb SHRIMP and microstructural data from the Ranong and Khlong Marui faults of Thailand to show that they experienced a major period of ductile dextral shear during the middle Eocene (48–40 Ma, centered on 44 Ma) which followed two phases of dextral shear along the Ranong Fault, before the Late Cretaceous (>81 Ma) and between the late Paleocene and early Eocene (59–49 Ma). Many of the sheared rocks were part of a pre-kinematic crystalline basement complex, which partially melted and was intruded by Late Cretaceous (81–71 Ma) and early Eocene (48 Ma) tin-bearing granites. Middle Eocene dextral shear at temperatures of ~300–500°C formed extensive mylonite belts through these rocks and was synchronous with granitoid vein emplacement. Dextral shear along the Ranong and Khlong Marui faults occurred at the same time as sinistral shear along the Mae Ping and Three Pagodas faults of northern Thailand, a result of India-Burma coupling in advance of India-Asia collision. In the late Eocene (<37 Ma) the Ranong and Khlong Marui faults were reactivated as curved sinistral branches of the Mae Ping and Three Pagodas faults, which were accommodating lateral extrusion during India-Asia collision and Himalayan orogenesis

    Human Body–Electrode Interfaces for Wide-Frequency Sensing and Communication: A Review

    No full text
    Several on-body sensing and communication applications use electrodes in contact with the human body. Body–electrode interfaces in these cases act as a transducer, converting ionic current in the body to electronic current in the sensing and communication circuits and vice versa. An ideal body–electrode interface should have the characteristics of an electrical short, i.e., the transfer of ionic currents and electronic currents across the interface should happen without any hindrance. However, practical body–electrode interfaces often have definite impedances and potentials that hinder the free flow of currents, affecting the application’s performance. Minimizing the impact of body–electrode interfaces on the application’s performance requires one to understand the physics of such interfaces, how it distorts the signals passing through it, and how the interface-induced signal degradations affect the applications. Our work deals with reviewing these elements in the context of biopotential sensing and human body communication

    Urban food market in Thailand

    No full text

    Towards an Open Testbed for Tactile Cyber Physical Systems

    No full text
    In this paper, we consider Tactile Cyber Physical Systems (TCPS), which differ from typical CPS in that haptic sensory feedback is included. In particular, we design and implement a TCPS testbed, called TCPSbed, using well-defined components and interfaces glued together using APIs. In addition to real connections, our testbed supports the interconnection of components over an NS3-emulated network. The testbed also supports the integration of applications that mimic the behaviour of real-world embedded objects. Since controlling latency and ensuring stability is crucial for TCPS applications, the testbed includes tools for fine-grained characterization of latency and control performance. Finally, through proof-of-concept experiments with our testbed, we demonstrate TCPSbed's capabilities to facilitate TCPS research and development.Embedded and Networked System

    Dynamic Network Slicing for the Tactile Internet

    No full text
    “Tactile internet” refers to a network that can support real-time interactions between human operators and remote cyber-physical systems as if they were near to each other. For this, the network should support ultra-low latency communication, often referred to as the 1ms challenge. However, we observe that network requirements, such as latency and band- width, of tactile internet based cyber-physical systems or Tactile Cyber-Physical Systems (TCPS) are not static: they severely fluctuate over time. Therefore, for TCPS, static provisioning of network resources is sub-optimal. For optimal utilization of network resources, we propose a mechanism to, per TCPS flow, dynamically create, destroy and switch network slices, based on the network resources needed at that time. Our solution consists of two main components. First, we develop a clustering algorithm to determine the slices and their specifications required to support a TCPS flow. Second, we leverage Software-Defined Networking (SDN) and P4-programmable switches to enable on- the-fly provisioning and switching of these slices.Virtual/online event due to COVID-19Embedded and Networked System

    TCPSbed: A Modular Testbed for Tactile Internet based Cyber-Physical Systems

    No full text
    Tactile Internet based Cyber-Physical Systems (TCPS) are highly sensitive to component and communication la- tencies and packet drops. Building a high performing TCPS, thus, necessitates experimenting with different hardware, algorithms, access technologies, and communication protocols. To facilitate such experiments, we have developed TCPSbed, a modular testbed for TCPS. TCPSbed facilitates the integration of different components, both real and simulated, to realize different TCPS applications and evaluate their latency and control performances. TCPSbed’s latency analyzer tool employs a novel method to isolate latencies of individual TCPS components such as the latencies contributed by actuation, sensing, algorithms, and by the network, all in an online fashion. TCPSbed’s method of analyzing stability is also novel. It involves the use of the step response analysis method, a classic control-theoretic method used for analyzing the stability of generic control systems. TCPSbed’s support for edge intelligence modules enables prediction of command and feedback signals at the network’s edge allowing TCPS applications to perform well in adverse network conditions. TCPSbed’s source-code, made available through our GitHub page TactileInternet, allows developers to extend its features and functionalities further. In this paper, we describe the architecture and implementation details of TCPSbed and demonstrate its features through several proof-of-concept experiments.Embedded and Networked System
    corecore