2,631 research outputs found

    Search for Sub-TeV Gamma Rays Coincident with BATSE Gamma Ray Bursts

    Full text link
    Project GRAND is a 100m x 100m air shower array of proportional wire chambers (PWCs). There are 64 stations each with eight 1.29 m^2 PWC planes arranged in four orthogonal pairs placed vertically above one another to geometrically measure the angles of charged secondaries. A steel plate above the bottom pair of PWCs differentiates muons (which pass undeflected through the steel) from non-penetrating particles. FLUKA Monte Carlo studies show that a TeV gamma ray striking the atmosphere at normal incidence produces 0.23 muons which reach ground level where their angles and identities are measured. Thus, paradoxically, secondary muons are used as a signature for gamma ray primaries. The data are examined for possible angular and time coincidences with eight gamma ray bursts (GRBs) detected by BATSE. Seven of the GRBs were selected because of their good acceptance by GRAND and high BATSE Fluence. The eighth GRB was added due to its possible coincident detection by Milagrito. For each of the eight candidate GRBs, the number of excess counts during the BATSE T90 time interval and within plus or minus five degrees of BATSE's direction was obtained. The highest statistical significance reported in this paper (2.7 sigma) is for the event that was predicted to be the most likely to be observed (GRB 971110).Comment: To be presented at the XXVIII International Cosmic Ray Conference, Tsukuba, Japa

    Reconstructing the recent visual past: Hierarchical knowledge-based effects in visual working memory

    Get PDF
    This paper presents two experiments that examine the influence of multiple levels of knowledge on visual working memory (VWM). Experiment 1 focused on memory for faces. Faces were selected from continua that were constructed by morphing two face photographs in 100 steps; half of the continua morphed a famous face into an unfamiliar one, while the other half used two unfamiliar faces. Participants studied six sequentially presented faces each from a different continuum, and at test they had to locate one of these within its continuum. Experiment 2 examined immediate memory for object sizes. On each trial, six images were shown; these were either all vegetables or all random shapes. Immediately after each list, one item was presented again, in a new random size, and participants reproduced its studied size. Results suggested that two levels of knowledge influenced VWM. First, there was an overall central-tendency bias whereby items were remembered as being closer to the overall average or central tokens (averaged across items and trials) than they actually were. Second, when object knowledge was available for the to-be-remembered items (i.e., famous face or typical size of a vegetable) a further bias was introduced in responses

    Strain Effects on Point Defects and Chain-Oxygen Order-Disorder Transition in 123-Structure Cuprate Superconductors

    Full text link
    The energetics of Schottky defects in 123 cuprate superconductor series, REBa2Cu3O7\rm REBa_2Cu_3O_7 (where RE = lanthandies) and YAE2Cu3O7\rm YAE_2Cu_3O_7 (AE = alkali-earths), were found to have unusual relations if one considers only the volumetric strain. Our calculations reveal the effect of non-uniform changes of interatomic distances within the RE-123 structures, introduced by doping homovalent elements, on the Schottky defect formation energy. The energy of formation of Frenkel Pair defects, which is an elementary disordering event, in 123 compounds can be substantially altered under both stress and chemical doping. Scaling the oxygen-oxygen short-range repulsive parameter using the calculated formation energy of Frenkel pair defects, the transition temperature between orthorhombic and tetragonal phases is computed by quasi-chemical approximations (QCA). The theoretical results illustrate the same trend as the experimental measurements in that the larger the ionic radius of RE, the lower the orthorhombic/tetragonal phase transition temperature. This study provides strong evidence of the strain effects on order-disorder transition due to oxygens in the CuO chain sites.Comment: In print Phys Rev B (2004

    Fracture in Three-Dimensional Fuse Networks

    Full text link
    We report on large scale numerical simulations of fracture surfaces using random fuse networks for two very different disorders. There are some properties and exponents that are different for the two distributions, but others, notably the roughness exponents, seem universal. For the universal roughness exponent we found a value of zeta = 0.62 +/- 0.05. In contrast to what is observed in two dimensions, this value is lower than that reported in experimental studies of brittle fractures, and rules out the minimal energy surface exponent, 0.41 +/- 0.01.Comment: 4 pages, RevTeX, 5 figures, Postscrip

    Gamma-Ray Bursts: Progress, Problems & Prospects

    Full text link
    The cosmological gamma-ray burst (GRB) phenomenon is reviewed. The broad observational facts and empirical phenomenological relations of the GRB prompt emission and afterglow are outlined. A well-tested, successful fireball shock model is introduced in a pedagogical manner. Several important uncertainties in the current understanding of the phenomenon are reviewed, and prospects of how future experiments and extensive observational and theoretical efforts may address these problems are discussed.Comment: 86 pages, 17 figures, 566 references, an invited review for International Journal of Modern Physics A, in pres

    Mean-field theory of the spin-Peierls systems: Application to CuGeO3

    Full text link
    A mean-field theory of the spin Peierls systems based on the two dimensional dimerized Heisenberg model is proposed by introducing an alternating bond order parameter. Improvements with respect to previous mean-field results are found in the one-dimensional limit for the ground state and the gap energies. In two dimensions, the analysis of the competition between antiferromagnetic long range order and the spin-Peierls ordering is given as a function of the coupling constants. We show that the lowest energy gap to be observed does not have a singlet-triplet character in agreement with the low temperature thermodynamic properties of CuGeO3.Comment: 3 Revtex pages. Submitted to Rapid Comm. Figures available upon reques

    Anomalous thermal conductivity of NaV2O5 as compared to conventional spin-Peierls system CuGeO3

    Get PDF
    A huge increase of thermal conductivity k is observed at the phase transition in stoichiometric NaV2O5. This anomaly decreases and gradually disappears with deviation from stoichiometry in Na(1-x}V2O5 (x = 0.01, 0.02, 0.03, and 0.04). This behavior is compared with that of pure and Zn-doped CuGeO3 where only modest kinks in the k(T) curves are observed at the spin-Peierls transition. The change of k at critical temperature Tc could be partially attributed to the opening of an energy gap in the magnetic excitation spectrum excluding the scattering of thermal phonons on spin fluctuations. However, the reason for such a strong anomaly in the k(T) may lie not only in the different energy scales of CuGeO3 and NaV2O5, but also in the different character of the phase transition in NaV2O5 which can have largely a structural origin, e.g. connected with the charge ordering.Comment: PostScript 4 pages, 4 PostScript pictures. Submitted to Physical Review Letter
    corecore