3,912 research outputs found
The kinetics of homogeneous melting beyond the limit of superheating
Molecular dynamics simulation is used to study the time-scales involved in
the homogeneous melting of a superheated crystal. The interaction model used is
an embedded-atom model for Fe developed in previous work, and the melting
process is simulated in the microcanonical ensemble. We study
periodically repeated systems containing from 96 to 7776 atoms, and the initial
system is always the perfect crystal without free surfaces or other defects.
For each chosen total energy and number of atoms , we perform several
hundred statistically independent simulations, with each simulation lasting for
between 500 ps and 10 ns, in order to gather statistics for the waiting time
before melting occurs. We find that the probability distribution
of is roughly exponential, and that the mean value depends strongly on the excess of the initial steady temperature of the
crystal above the superheating limit identified by other researchers. The mean
also depends strongly on system size in a way that we have
quantified. For very small systems of atoms, we observe a persistent
alternation between the solid and liquid states, and we explain why this
happens. Our results allow us to draw conclusions about the reliability of the
recently proposed Z method for determining the melting properties of simulated
materials, and to suggest ways of correcting for the errors of the method.Comment: 19 pages, 8 figure
Practical quantum realization of the ampere from the electron charge
One major change of the future revision of the International System of Units
(SI) is a new definition of the ampere based on the elementary charge \emph{e}.
Replacing the former definition based on Amp\`ere's force law will allow one to
fully benefit from quantum physics to realize the ampere. However, a quantum
realization of the ampere from \emph{e}, accurate to within in
relative value and fulfilling traceability needs, is still missing despite many
efforts have been spent for the development of single-electron tunneling
devices. Starting again with Ohm's law, applied here in a quantum circuit
combining the quantum Hall resistance and Josephson voltage standards with a
superconducting cryogenic amplifier, we report on a practical and universal
programmable quantum current generator. We demonstrate that currents generated
in the milliampere range are quantized in terms of
( is the Josephson frequency) with a measurement uncertainty of
. This new quantum current source, able to deliver such accurate
currents down to the microampere range, can greatly improve the current
measurement traceability, as demonstrated with the calibrations of digital
ammeters. Beyond, it opens the way to further developments in metrology and in
fundamental physics, such as a quantum multimeter or new accurate comparisons
to single electron pumps.Comment: 15 pages, 4 figure
The role of gravity on macrosegregation in alloys
During dendritic solidification liquid flow is induced both by buoyancy forces and solidification shrinkage. There is strong evidence that the major reason for the liquid flow is the former, i.e., thermosolutal convection. In the microgravity environment, it is thought that the thermosolutal convection will be greatly diminished so that convection will be confined mainly to the flow of interdendritic liquid required to satisfy the solidification shrinkage. An attempt is made to provide improved models of dendritic solidification with emphasis on convection and macrosegregation. Macrosegregation is an extremely important subject to the commercial casting community. The simulation of thermosolutal convection in directionally solidified (DS) alloys is described. A linear stability analysis was used to predict marginal stability curves for a system that comprises a mushy zone underlying an all-liquid zone. The supercritical thermosolutal convection in directionally solidified dendritic alloys was also modeled. The model assumes a nonconvective initial state with planar and horizontal isotherms and isoconcentration that move upward at a constant solidification velocity. Results are presented for systems involving lead-tin alloys and show significant differences with results of plane-front solidification
Quantum Hall effect in exfoliated graphene affected by charged impurities: metrological measurements
Metrological investigations of the quantum Hall effect (QHE) completed by
transport measurements at low magnetic field are carried out in
a-few--wide Hall bars made of monolayer (ML) or bilayer (BL)
exfoliated graphene transferred on substrate. From the
charge carrier density dependence of the conductivity and from the measurement
of the quantum corrections at low magnetic field, we deduce that transport
properties in these devices are mainly governed by the Coulomb interaction of
carriers with a large concentration of charged impurities. In the QHE regime,
at high magnetic field and low temperature (), the Hall
resistance is measured by comparison with a GaAs based quantum resistance
standard using a cryogenic current comparator. In the low dissipation limit, it
is found quantized within 5 parts in (one standard deviation, ) at the expected rational fractions of the von Klitzing constant,
respectively and in the ML and BL
devices. These results constitute the most accurate QHE quantization tests to
date in monolayer and bilayer exfoliated graphene. It turns out that a main
limitation to the quantization accuracy, which is found well above the
accuracy usually achieved in GaAs, is the low value of the QHE
breakdown current being no more than . The current dependence
of the longitudinal conductivity investigated in the BL Hall bar shows that
dissipation occurs through quasi-elastic inter-Landau level scattering,
assisted by large local electric fields. We propose that charged impurities are
responsible for an enhancement of such inter-Landau level transition rate and
cause small breakdown currents.Comment: 14 pages, 9 figure
A comparison between detailed and configuration-averaged collisional-radiative codes applied to non-local thermal equilibrium plasma
A collisional-radiative model describing nonlocal-thermodynamic-equilibrium
plasmas is developed. It is based on the HULLAC (Hebrew University Lawrence
Livermore Atomic Code) suite for the transitions rates, in the zero-temperature
radiation field hypothesis. Two variants of the model are presented: the first
one is configuration averaged, while the second one is a detailed level
version. Comparisons are made between them in the case of a carbon plasma; they
show that the configuration-averaged code gives correct results for an
electronic temperature Te=10 eV (or higher) but fails at lower temperatures
such as Te=1 eV. The validity of the configuration-averaged approximation is
discussed: the intuitive criterion requiring that the average
configuration-energy dispersion must be less than the electron thermal energy
turns out to be a necessary but far from sufficient condition. Another
condition based on the resolution of a modified rate-equation system is
proposed. Its efficiency is emphasized in the case of low-temperature plasmas.
Finally, it is shown that near-threshold autoionization cascade processes may
induce a severe failure of the configuration-average formalism.Comment: 9
- …