117 research outputs found
The Great Acceleration is real and provides a quantitative basis for the proposed Anthropocene Series/Epoch
The Anthropocene was conceptualized in 2000 to reflect the extensive impact of human activities on our planet, and subsequent detailed analyses have revealed a substantial Earth System response to these impacts beginning in the mid-20th century. Key to this understanding was the discovery of a sharp upturn in a multitude of global socio-economic indicators and Earth System trends at that time; a phenomenon termed the ‘Great Acceleration’. It coincides with massive increases in global human-consumed energy and shows the Earth System now on a trajectory far exceeding the earlier variability of the Holocene Epoch, and in some respects the entire Quaternary Period. The evaluation of geological signals similarly shows the mid-20th century as representing the most appropriate inception for the Anthropocene. A recent mathematical analysis has nonetheless challenged the significance of the original Great Acceleration data. We examine this analytical approach and reiterate the robustness of the original data in supporting the Great Acceleration, while emphasizing that intervals of rapid growth are inevitably time-limited, as recognised at the outset. Moreover, the exceptional magnitude of this growth remains undeniable, reaffirming the centrality of the Great Acceleration in justifying a formal chronostratigraphic Anthropocene at the rank of series/epoch
Toroidal flux oscillation as possible cause of geomagnetic excursions and reversals
It is proposed that convection driven dynamos operating in planetary cores
could be oscillatory even when the oscillations are not directly noticeable
from the outside. Examples of dynamo simulations are pointed out that exhibit
oscillations in the structure of the azimuthally averaged toroidal magnetic
flux while the mean poloidal field shows only variations in its amplitude. In
the case of the geomagnetic field, global excursions may be associated with
these oscillations. Long period dynamo simulations indicate that the
oscillations may cause reversals once in a while. No special attempt has been
made to use most realistic parameter values. Nevertheless some similarities
between the simulations and the paleomagnetic record can be pointed out.Comment: Published in PEP
Physical Properties of Iron in the Inner Core
The Earth's inner core plays a vital role in the dynamics of our planet and
is itself strongly exposed to dynamic processes as evidenced by a complex
pattern of elastic structure. To gain deeper insight into the nature of these
processes we rely on a characterization of the physical properties of the inner
core which are governed by the material physics of its main constituent, iron.
Here we review recent research on structure and dynamics of the inner core,
focusing on advances in mineral physics. We will discuss results on core
composition, crystalline structure, temperature,and various aspects of
elasticity. Based on recent computational results, we will show that aggregate
seismic properties of the inner core can be explained by temperature and
compression effects on the elasticity of pure iron, and use single crystal
anisotropy to develop a speculative textural model of the inner core that can
explain major aspects of inner core anisotropy.Comment: 23 pages, 16 figures. To appear in AGU Geodynamics Series book on
"Core structure, dynamics, and rotation", V. Dehant et al. (eds.
The Anthropocene is functionally and stratigraphically distinct from the Holocene
Human activity is leaving a pervasive and persistent signature on Earth. Vigorous debate continues about whether this warrants recognition as a new geologic time unit known as the Anthropocene. We review anthropogenic markers of functional changes in the Earth system through the stratigraphic record. The appearance of manufactured materials in sediments − including aluminum, plastics and concrete − coincides with global spikes in fallout radionuclides and particulates from fossil-fuel combustion. Carbon, nitrogen, and phosphorus cycles have been substantially modified over the last century. Rates of sea-level rise, and the extent of human perturbation of the climate system, exceed Late Holocene changes. Biotic changes include species invasions worldwide and accelerating rates of extinction. These combined signals render the Anthropocene stratigraphically distinct from the Holocene and earlier epochs
Is the Anthropocene distinct from the Holocene? [abstract only]
The inaugural meeting of the Anthropocene Working Group of the Subcommission on Quaternary Stratigraphy in Berlin (Oct. 2014) produced a consensus statement that “humans have altered geologic processes across the Earth system sufficiently to cause a planetary transition to a new interval of geological time”, with the timing of the onset the focus of continued debate, but with a majority in favour of a mid-20th century beginning. The name has driven the assumption that the Anthropocene should be an epoch, but are its signatures truly driven out of the range evident for most of the Holocene, or are changes comparable or subsidiary to Holocene stages?
The evidence rests upon a broad range of signatures reflecting humanity’s significant and increasing modification of Earth systems. These are visible in anthropogenic deposits in the form of the greatest expansion of novel minerals in the last 2.4 billion years and development of ubiquitous materials, such as plastics, present in the environment only in the last 60 years. Globally distributed spherical carbonaceous particles of fly ash represent another near-synchronous and permanent proxy. The artefacts we produce, the technofossils of the future, provide a decadal to annual stratigraphical resolution. These materials and deposits have in recent decades extended into the oceans and increasingly into the subsurface both onshore and offshore. These anthropogenic deposits are transported at rates exceeding those of the sediment carried by rivers by an order of magnitude, fluvial systems themselves showing widespread sediment retention in response to dam construction across most major river systems. The Anthropocene is evident in sediment and glacial ice strata as chemical markers. CO2 in the atmosphere has risen by ~45 percent above pre-Industrial Revolution levels, mainly through combustion of hydrocarbons over a few decades. Although average global temperature increases and resultant sea-level rises are still comparatively small, the shift to more negative δ13C values in tree-rings, limestones, speleothems, calcareous fossils and δ13CO2 in ice forms a permanent record. Nitrogen and phosphorus contents in surface soils has approximately doubled through increased use of fertilizers to increase agricultural yields as the human population has also doubled in the last 50 years. Industrial metals such as Cd, Cr, Cu, Hg, Ni, Pb, Zn and persistent organic compounds have been widely and rapidly dispersed. A clear novel signature is radioactive fallout from atomic weapons testing, initiated in 1945 but becoming global in 1952 and in the case of Pu239 representing a long-lasting marker event. The Earth still has most of its complement of biological species, though many now as small populations: current trends of habitat loss and predation, if maintained, will push the Earth into the sixth mass extinction event in the next few centuries. Dramatic elapsed changes include trans-global species invasions and population modification through agricultural development on land and contamination of coastal zones. Although these changes are not synchronous, within near coastal environments microfauna/flora commonly show pronounced assemblage changes in the mid-20th century.
Considering the entire range of environmental changes reflected in stratigraphic signatures, the global, large and rapid scale of change related to the mid-20th century is clearly distinct from previous Holocene signatures, consistent with interpretation of the Anthropocene as a potential epoch
Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19
Background: We previously reported that impaired type I IFN activity, due to inborn errors of TLR3- and TLR7-dependent type I interferon (IFN) immunity or to autoantibodies against type I IFN, account for 15–20% of cases of life-threatening COVID-19 in unvaccinated patients. Therefore, the determinants of life-threatening COVID-19 remain to be identified in ~ 80% of cases. Methods: We report here a genome-wide rare variant burden association analysis in 3269 unvaccinated patients with life-threatening COVID-19, and 1373 unvaccinated SARS-CoV-2-infected individuals without pneumonia. Among the 928 patients tested for autoantibodies against type I IFN, a quarter (234) were positive and were excluded. Results: No gene reached genome-wide significance. Under a recessive model, the most significant gene with at-risk variants was TLR7, with an OR of 27.68 (95%CI 1.5–528.7, P = 1.1 × 10−4) for biochemically loss-of-function (bLOF) variants. We replicated the enrichment in rare predicted LOF (pLOF) variants at 13 influenza susceptibility loci involved in TLR3-dependent type I IFN immunity (OR = 3.70[95%CI 1.3–8.2], P = 2.1 × 10−4). This enrichment was further strengthened by (1) adding the recently reported TYK2 and TLR7 COVID-19 loci, particularly under a recessive model (OR = 19.65[95%CI 2.1–2635.4], P = 3.4 × 10−3), and (2) considering as pLOF branchpoint variants with potentially strong impacts on splicing among the 15 loci (OR = 4.40[9%CI 2.3–8.4], P = 7.7 × 10−8). Finally, the patients with pLOF/bLOF variants at these 15 loci were significantly younger (mean age [SD] = 43.3 [20.3] years) than the other patients (56.0 [17.3] years; P = 1.68 × 10−5). Conclusions: Rare variants of TLR3- and TLR7-dependent type I IFN immunity genes can underlie life-threatening COVID-19, particularly with recessive inheritance, in patients under 60 years old
Development of conjugated linoleic acid (CLA)-mediated lipoatrophic syndrome in the mouse
International audienceConjugated linoleic acids (CLA) are positional and geometric dienoic isomers of linoleic acid. Dietary CLA supplementation leads to a drop in fat mass in various species, including in humans. The t10,c12-CLA isomer is responsible for this anti-obesity effect. The reduction of fat mass is especially dramatic in the mouse, in which it is associated with severe hyperinsulinemia, insulin resistance and massive liver steatosis. The origin of these adverse side effects and putative chronology of events leading to CLA-mediated lipoatrophic syndrome are presented and discussed in this review
P278 Un régime enrichi en isomères conjugués de l’acide linoléique (CLA) induit une inflammation massive et réversible du tissu adipeux chez la souris
Chez la souris, un régime enrichi en isomères conjugués de l’acide linoléique (CLA) provoque une lipodystrophie majeure. Une étude récente (Poirier et al., Diabetes, 2006, 55 : 1634) révèle l’accumulation rapide de macrophages dans le tissu adipeux blanc de souris traitées par l’isomère actif, t10, c12-CLA, après 7 jours de gavage. Nous avons utilisé ce modèle pour caractériser la cinétique d’infiltration du tissu adipeux par les différents types de cellules de l’immunité innée et adaptative
- …