43 research outputs found
A Measurement of Rb using a Double Tagging Method
The fraction of Z to bbbar events in hadronic Z decays has been measured by
the OPAL experiment using the data collected at LEP between 1992 and 1995. The
Z to bbbar decays were tagged using displaced secondary vertices, and high
momentum electrons and muons. Systematic uncertainties were reduced by
measuring the b-tagging efficiency using a double tagging technique. Efficiency
correlations between opposite hemispheres of an event are small, and are well
understood through comparisons between real and simulated data samples. A value
of Rb = 0.2178 +- 0.0011 +- 0.0013 was obtained, where the first error is
statistical and the second systematic. The uncertainty on Rc, the fraction of Z
to ccbar events in hadronic Z decays, is not included in the errors. The
dependence on Rc is Delta(Rb)/Rb = -0.056*Delta(Rc)/Rc where Delta(Rc) is the
deviation of Rc from the value 0.172 predicted by the Standard Model. The
result for Rb agrees with the value of 0.2155 +- 0.0003 predicted by the
Standard Model.Comment: 42 pages, LaTeX, 14 eps figures included, submitted to European
Physical Journal
Measurement of the B+ and B-0 lifetimes and search for CP(T) violation using reconstructed secondary vertices
The lifetimes of the B+ and B-0 mesons, and their ratio, have been measured in the OPAL experiment using 2.4 million hadronic Z(0) decays recorded at LEP. Z(0) --> b (b) over bar decays were tagged using displaced secondary vertices and high momentum electrons and muons. The lifetimes were then measured using well-reconstructed charged and neutral secondary vertices selected in this tagged data sample. The results aretau(B+) = 1.643 +/- 0.037 +/- 0.025 pstau(Bo) = 1.523 +/- 0.057 +/- 0.053 pstau(B+)/tau(Bo) = 1.079 +/- 0.064 +/- 0.041,where in each case the first error is statistical and the second systematic.A larger data sample of 3.1 million hadronic Z(o) decays has been used to search for CP and CPT violating effects by comparison of inclusive b and (b) over bar hadron decays, No evidence fur such effects is seen. The CP violation parameter Re(epsilon(B)) is measured to be Re(epsilon(B)) = 0.001 +/- 0.014 +/- 0.003and the fractional difference between b and (b) over bar hadron lifetimes is measured to(Delta tau/tau)(b) = tau(b hadron) - tau((b) over bar hadron)/tau(average) = -0.001 +/- 0.012 +/- 0.008
Experimental properties of gluon and quark jets from a point source
Gluon jets are identified in hadronic Z0 decays as all the particles in a hemisphere opposite to a hemisphere containing two tagged quark jets. Gluon jets defined in this manner are equivalent to gluon jets produced from a color singlet point source and thus correspond to the definition employed for most theoretical calculations. In a separate stage of the analysis, we select quark jets in a manner to correspond to calculations, as the particles in hemispheres of flavor tagged light quark (uds) events. We present the distributions of rapidity, scaled energy, the logarithm of the momentum, and transverse momentum with respect to the jet axes, for charged particles in these gluon and quark jets. We also examine the charged particle multiplicity distributions of the jets in restricted intervals of rapidity. For soft particles at large transverse momentum, we observe the charged particle multiplicity ratio of gluon to quark jets to be 2.29 +- 0.09 +- 0.15 in agreement with the prediction that this ratio should approximately equal the ratio of QCD color factors, CA/CF = 2.25. The intervals used to define soft particles and large transverse momentum for this result, p<4 GeV/c and 0.8<p_t<3.0 GeV/c, are motivated by the predictions of the Herwig Monte Carlo multihadronic event generator. Additionally, our gluon jet data allow a sensitive test of the phenomenon of non-leading QCD terms known as color reconnection. We test the model of color reconnection implemented in the Ariadne Monte Carlo multihadronic event generator and find it to be disfavored by our data.Gluon jets are identified in hadronic Z0 decays as all the particles in a hemisphere opposite to a hemisphere containing two tagged quark jets. Gluon jets defined in this manner are equivalent to gluon jets produced from a color singlet point source and thus correspond to the definition employed for most theoretical calculations. In a separate stage of the analysis, we select quark jets in a manner to correspond to calculations, as the particles in hemispheres of flavor tagged light quark (uds) events. We present the distributions of rapidity, scaled energy, the logarithm of the momentum, and transverse momentum with respect to the jet axes, for charged particles in these gluon and quark jets. We also examine the charged particle multiplicity distributions of the jets in restricted intervals of rapidity. For soft particles at large transverse momentum, we observe the charged particle multiplicity ratio of gluon to quark jets to be 2.29 +- 0.09 +- 0.15 in agreement with the prediction that this ratio should approximately equal the ratio of QCD color factors, CA/CF = 2.25. The intervals used to define soft particles and large transverse momentum for this result, p<4 GeV/c and 0.8<p_t<3.0 GeV/c, are motivated by the predictions of the Herwig Monte Carlo multihadronic event generator. Additionally, our gluon jet data allow a sensitive test of the phenomenon of non-leading QCD terms known as color reconnection. We test the model of color reconnection implemented in the Ariadne Monte Carlo multihadronic event generator and find it to be disfavored by our data.Gluon jets are identified in hadronic Z0 decays as all the particles in a hemisphere opposite to a hemisphere containing two tagged quark jets. Gluon jets defined in this manner are equivalent to gluon jets produced from a color singlet point source and thus correspond to the definition employed for most theoretical calculations. In a separate stage of the analysis, we select quark jets in a manner to correspond to calculations, as the particles in hemispheres of flavor tagged light quark (uds) events. We present the distributions of rapidity, scaled energy, the logarithm of the momentum, and transverse momentum with respect to the jet axes, for charged particles in these gluon and quark jets. We also examine the charged particle multiplicity distributions of the jets in restricted intervals of rapidity. For soft particles at large transverse momentum, we observe the charged particle multiplicity ratio of gluon to quark jets to be 2.29 +- 0.09 +- 0.15 in agreement with the prediction that this ratio should approximately equal the ratio of QCD color factors, CA/CF = 2.25. The intervals used to define soft particles and large transverse momentum for this result, p<4 GeV/c and 0.8<p_t<3.0 GeV/c, are motivated by the predictions of the Herwig Monte Carlo multihadronic event generator. Additionally, our gluon jet data allow a sensitive test of the phenomenon of non-leading QCD terms known as color reconnection. We test the model of color reconnection implemented in the Ariadne Monte Carlo multihadronic event generator and find it to be disfavored by our data.Gluon jets are identified in hadronic Z0 decays as all the particles in a hemisphere opposite to a hemisphere containing two tagged quark jets. Gluon jets defined in this manner are equivalent to gluon jets produced from a color singlet point source and thus correspond to the definition employed for most theoretical calculations. In a separate stage of the analysis, we select quark jets in a manner to correspond to calculations, as the particles in hemispheres of flavor tagged light quark (uds) events. We present the distributions of rapidity, scaled energy, the logarithm of the momentum, and transverse momentum with respect to the jet axes, for charged particles in these gluon and quark jets. We also examine the charged particle multiplicity distributions of the jets in restricted intervals of rapidity. For soft particles at large transverse momentum, we observe the charged particle multiplicity ratio of gluon to quark jets to be 2.29 +- 0.09 +- 0.15 in agreement with the prediction that this ratio should approximately equal the ratio of QCD color factors, CA/CF = 2.25. The intervals used to define soft particles and large transverse momentum for this result, p<4 GeV/c and 0.8<p_t<3.0 GeV/c, are motivated by the predictions of the Herwig Monte Carlo multihadronic event generator. Additionally, our gluon jet data allow a sensitive test of the phenomenon of non-leading QCD terms known as color reconnection. We test the model of color reconnection implemented in the Ariadne Monte Carlo multihadronic event generator and find it to be disfavored by our data
Search for anomalous production of di-lepton events with missing transverse momentum in e(+)e(-) collisions at root s = 161 and 172 GeV
Events containing a pair of charged leptons and significant missing transverse momentum are selected from a data sample corresponding to a total integrated luminosity of 20.6 pb^-1 at centre-of-mass energies of 161 GeV and 172 GeV. The observed number of events, four at 161 GeV and nine at 172 GeV, is consistent with the number expected from Standard Model processes, predominantly arising from W+W- production with each W decaying leptonically. This topology is also an experimental signature for the pair production of new particles that decay to a charged lepton accompanied by one or more invisible particles. Further event selection criteria are described that optimise the sensitivity to particular new physics channels. No evidence for new phenomena is observed and limits on the production of scalar charged lepton pairs and other new particles are presented
Tests of the standard model and constraints on new physics from measurements of fermion-pair production at 130-172GeV at LEP
Production of events with hadronic and leptonic final states has been measured in e(+)e(-) collisions at centre-of-mass energies of 130-172 GeV, using the OPAL detector at LEP. Cross-sections and leptonic forward-backward asymmetries are presented, both including and excluding the dominant production of radiative Z gamma events, and compared to Standard Model expectations. The ratio R-b of the cross-section for production to the hadronic cross-section has been measured. In a model-independent fit to the Z lineshape, the data have been used to obtain an improved precision on the measurement of gamma-Z interference. The energy dependence of alpha(em) has been investigated. The measurements have also been used to obtain limits on extensions of the Standard Model described by effective four-fermion contact interactions, to search for t-channel contributions from new massive particles and to place limits on gaugino pair production with subsequent decay of the gaugino into a light gluino and a quark pair
Electroweak parameters of the z0 resonance and the standard model
Contains fulltext :
124399.pdf (publisher's version ) (Open Access