1,111 research outputs found
Nematicity as a route to a magnetic field-induced spin density wave order; application to the high temperature cuprates
The electronic nematic order characterized by broken rotational symmetry has
been suggested to play an important role in the phase diagram of the high
temperature cuprates. We study the interplay between the electronic nematic
order and a spin density wave order in the presence of a magnetic field. We
show that a cooperation of the nematicity and the magnetic field induces a
finite coupling between the spin density wave and spin-triplet staggered flux
orders. As a consequence of such a coupling, the magnon gap decreases as the
magnetic field increases, and it eventually condenses beyond a critical
magnetic field leading to a field-induced spin density wave order. Both
commensurate and incommensurate orders are studied, and the experimental
implications of our findings are discussed.Comment: 5 pages, 3 figure
A study of plans made by unmarried mothers for their babies
Thesis (M.S.)--Boston University This item was digitized by the Internet Archive
Singularity structure in Veneziano's model
We consider the structure of the cosmological singularity in Veneziano's
inflationary model. The problem of choosing initial data in the model is shown
to be unsolved -- the spacetime in the asymptotically flat limit can be filled
with an arbitrary number of gravitational and scalar field quanta. As a result,
the universe acquires a domain structure near the singularity, with an
anisotropic expansion of its own being realized in each domain.Comment: 16 pages, 2 figures, shorter then journal version; references added,
discussion slightly expande
Superconducting quantum phase transitions tuned by magnetic impurity and magnetic field in ultrathin a-Pb films
Superconducting quantum phase transitions tuned by disorder (d), paramagnetic
impurity (MI) and perpendicular magnetic field (B) have been studied in
homogeneously disordered ultrathin a-Pb films. The MI-tuned transition is
characterized by progressive suppression of the critical temperature to zero
and a continuous transition to a weakly insulating normal state with increasing
MI density. In all important aspects, the d-tuned transition closely resembles
the MI-tuned transition and both appear to be fermionic in nature. The B-tuned
transition is qualitatively different and probably bosonic. In the critical
region it exhibits transport behavior that suggests a B-induced mesoscale phase
separation and presence of Cooper pairing in the insulating state.Comment: 17 pages, 4 figure
- …