803 research outputs found

    Calculation of fluxes of charged particles and neutrinos from atmospheric showers

    Full text link
    The results on the fluxes of charged particles and neutrinos from a 3-dimensional (3D) simulation of atmospheric showers are presented. An agreement of calculated fluxes with data on charged particles from the AMS and CAPRICE detectors is demonstrated. Predictions on neutrino fluxes at different experimental sites are compared with results from other calculations.Comment: 24 pages, 16 pictures, LaTe

    Calculation of atmospheric neutrino flux

    Get PDF
    A calculation of the fluxes of primary particles arriving to the Earth's vicinity as well as those produced in the interactions of the primaries with the atmosphere is presented. The result of calculations is compared with the experimental data obtained with the Alpha Magnetic Spectrometer (AMS). A good agreement of calculated and measured fluxes of charged particles supports the viability of the atmospheric neutrino flux calculation

    Atmospheric neutrino flux from 3-dimensional simulation

    Full text link
    The atmospheric muon and neutrino flux have been simulated using the same approach which successfully accounted for the recent secondary proton, electron and positron flux measurements in orbit by the AMS experiment. For the muon flux, a good agreement is obtained with the CAPRICE and HEAT data for altitudes ranging from sea level up to about 38 km. The general features of the calculated atmospheric neutrino flux are reported and discussed. The flux obtained at the Super-Kamiokande experiment location are reported and compared with other calculations. For low neutrino energies the flux obtained is significantly smaller than that used in the data analysis of underground experiment. The simulation results for the SOUDAN experiment site are also reported.Comment: 33 pages, 27 figures, 12 tables, final version for Phys. Rev.

    Simulation of Atmospheric Muon and Neutrino Fluxes with CORSIKA

    Full text link
    The fluxes of atmospheric muons and neutrinos are calculated by a three dimensional Monte Carlo simulation with the air shower code CORSIKA using the hadronic interaction models DPMJET, VENUS, GHEISHA, and UrQMD. For the simulation of low energy primary particles the original CORSIKA has been extended by a parametrization of the solar modulation and a microscopic calculation of the directional dependence of the geomagnetic cut-off functions. An accurate description for the geography of the Earth has been included by a digital elevation model, tables for the local magnetic field in the atmosphere, and various atmospheric models for different geographic latitudes and annual seasons. CORSIKA is used to calculate atmospheric muon fluxes for different locations and the neutrino fluxes for Kamioka. The results of CORSIKA for the muon fluxes are verified by an extensive comparison with recent measurements. The obtained neutrino fluxes are compared with other calculations and the influence of the hadronic interaction model, the geomagnetic cut-off and the local magnetic field on the neutrino fluxes is investigated.Comment: revtex, 19 pages, 19 Postscript figures, submitted to Phys. Rev.

    Protons in near earth orbit

    Get PDF
    The proton spectrum in the kinetic energy range 0.1 to 200 GeV was measured by the Alpha Magnetic Spectrometer (AMS) during space shuttle flight STS-91 at an altitude of 380 km. Above the geomagnetic cutoff the observed spectrum is parameterized by a power law. Below the geomagnetic cutoff a substantial second spectrum was observed concentrated at equatorial latitudes with a flux ~ 70 m^-2 sec^-1 sr^-1. Most of these second spectrum protons follow a complicated trajectory and originate from a restricted geographic region.Comment: 19 pages, Latex, 7 .eps figure

    A Study of Cosmic Ray Secondaries Induced by the Mir Space Station Using AMS-01

    Get PDF
    The Alpha Magnetic Spectrometer (AMS-02) is a high energy particle physics experiment that will study cosmic rays in the 100MeV\sim 100 \mathrm{MeV} to 1TeV1 \mathrm{TeV} range and will be installed on the International Space Station (ISS) for at least 3 years. A first version of AMS-02, AMS-01, flew aboard the space shuttle \emph{Discovery} from June 2 to June 12, 1998, and collected 10810^8 cosmic ray triggers. Part of the \emph{Mir} space station was within the AMS-01 field of view during the four day \emph{Mir} docking phase of this flight. We have reconstructed an image of this part of the \emph{Mir} space station using secondary π\pi^- and μ\mu^- emissions from primary cosmic rays interacting with \emph{Mir}. This is the first time this reconstruction was performed in AMS-01, and it is important for understanding potential backgrounds during the 3 year AMS-02 mission.Comment: To be submitted to NIM B Added material requested by referee. Minor stylistic and grammer change

    Search for antihelium in cosmic rays

    Get PDF
    The Alpha Magnetic Spectrometer (AMS) was flown on the space shuttle Discovery during flight STS-91 in a 51.7 degree orbit at altitudes between 320 and 390 km. A total of 2.86 * 10^6 helium nuclei were observed in the rigidity range 1 to 140 GV. No antihelium nuclei were detected at any rigidity. An upper limit on the flux ratio of antihelium to helium of < 1.1 * 10^-6 is obtained.Comment: 18 pages, Latex, 9 .eps figure

    Isotopic Composition of Light Nuclei in Cosmic Rays: Results from AMS-01

    Get PDF
    The variety of isotopes in cosmic rays allows us to study different aspects of the processes that cosmic rays undergo between the time they are produced and the time of their arrival in the heliosphere. In this paper we present measurements of the isotopic ratios 2H/4He, 3He/4He, 6Li/7Li, 7Be/(9Be+10Be) and 10B/11B in the range 0.2-1.4 GeV of kinetic energy per nucleon. The measurements are based on the data collected by the Alpha Magnetic Spectrometer, AMS-01, during the STS-91 flight in 1998 June.Comment: To appear in ApJ. 12 pages, 11 figures, 6 table

    Study of Spin and Decay-Plane Correlations of W Bosons in the e+e- -> W+W- Process at LEP

    Get PDF
    Data collected at LEP at centre-of-mass energies \sqrt(s) = 189 - 209 GeV are used to study correlations of the spin of W bosons using e+e- -> W+W- -> lnqq~ events. Spin correlations are favoured by data, and found to agree with the Standard Model predictions. In addition, correlations between the W-boson decay planes are studied in e+e- -> W+W- -> lnqq~ and e+e- -> W+W- -> qq~qq~ events. Decay-plane correlations, consistent with zero and with the Standard Model predictions, are measured

    Ultrarelativistic sources in nonlinear electrodynamics

    Get PDF
    The fields of rapidly moving sources are studied within nonlinear electrodynamics by boosting the fields of sources at rest. As a consequence of the ultrarelativistic limit the delta-like electromagnetic shock waves are found. The character of the field within the shock depends on the theory of nonlinear electrodynamics considered. In particular, we obtain the field of an ultrarelativistic charge in the Born-Infeld theory.Comment: 10 pages, 3 figure
    corecore