4,395 research outputs found

    Direct Dark Matter Detection with Velocity Distribution in the Eddington approach

    Full text link
    Exotic dark matter together with the vacuum energy (associated with the cosmological constant) seem to dominate the Universe. Thus its direct detection is central to particle physics and cosmology. Supersymmetry provides a natural dark matter candidate, the lightest supersymmetric particle (LSP). One essential ingredient in obtaining the direct detection rates is the density and the velocity distribution of the LSP in our vicinity. In the present paper we study simultaneously density profiles and velocity distributions in the context of the Eddington approach. In such an approach, unlike the commonly assumed Maxwell-Boltzmann (M-B) distribution, the upper bound of the velocity arises naturally from the potential.Comment: 21 LaTex pages, 27 figure

    Long-Term Evolution of Massive Black Hole Binaries. II. Binary Evolution in Low-Density Galaxies

    Get PDF
    We use direct-summation N-body integrations to follow the evolution of binary black holes at the centers of galaxy models with large, constant-density cores. Particle numbers as large as 400K are considered. The results are compared with the predictions of loss-cone theory, under the assumption that the supply of stars to the binary is limited by the rate at which they can be scattered into the binary's influence sphere by gravitational encounters. The agreement between theory and simulation is quite good; in particular, we are able to quantitatively explain the observed dependence of binary hardening rate on N. We do not verify the recent claim of Chatterjee, Hernquist & Loeb (2003) that the hardening rate of the binary stabilizes when N exceeds a particular value, or that Brownian wandering of the binary has a significant effect on its evolution. When scaled to real galaxies, our results suggest that massive black hole binaries in gas-poor nuclei would be unlikely to reach gravitational-wave coalescence in a Hubble time.Comment: 13 pages, 8 figure

    Germination responses of a dry sclerophyll forest soil-stored seedbank to fire related cues

    Get PDF
    Fire is an integral component of many ecosystems worldwide. Many plant species require fire-related cues, primarily heat and smoke, to trigger germination. Despite the importance of this process, the responses of many Australian species to these cues are unknown. Without this knowledge fire management strategies may be developed that are inappropriate for individual species and vegetation communities. In this study we examined the responses of a dry sclerophyll forest seed bank to heat and smoke germination cues. Analysis was possible for 48 taxa within the soil seedbank with 34 of these showing a response to one or both of the germination cues. 10 species responded to the heat treatment, 11 species responded to the smoke treatment and 13 species responded to both the heat and smoke treatments. Germination cues acted independently for all species considered. Results in this study were consistent with published reports for most species, although some differences were seen at the species and genus level. The study highlights the importance of fire-related cues in enhancing germination of a large proportion of the species occurring in dry sclerophyll forests

    Collisional dynamics around binary black holes in galactic centers

    Get PDF
    We follow the sinking of two massive black holes in a spherical stellar system where the black holes become bound under the influence of dynamical friction. Once bound, the binary hardens by three-body encounters with surrounding stars. We find that the binary wanders inside the core, providing an enhanced supply of reaction partners for the hardening. The binary evolves into a highly eccentric orbit leading to coalescence well beyond a Hubble time. These are the first results from a hybrid ``self consistent field'' (SCF) and direct Aarseth N-body integrator (NBODY6), which combines the advantages of the direct force calculation with the efficiency of the field method. The code is designed for use on parallel architectures and is therefore applicable to collisional N-body integrations with extraordinarily large particle numbers (> 10^5). This creates the possibility of simulating the dynamics of both globular clusters with realistic collisional relaxation and stellar systems surrounding supermassive black holes in galactic nuclei.Comment: 38 pages, 13 figures, submitted to ApJ, accepted, revised text and added figure

    Stark shift and field ionization of arsenic donors in 28^{28}Si-SOI structures

    Full text link
    We develop an efficient back gate for silicon-on-insulator (SOI) devices operating at cryogenic temperatures, and measure the quadratic hyperfine Stark shift parameter of arsenic donors in isotopically purified 28^{28}Si-SOI layers using such structures. The back gate is implemented using MeV ion implantation through the SOI layer forming a metallic electrode in the handle wafer, enabling large and uniform electric fields up to ∼\sim 2 V/μ\mum to be applied across the SOI layer. Utilizing this structure we measure the Stark shift parameters of arsenic donors embedded in the 28^{28}Si SOI layer and find a contact hyperfine Stark parameter of ηa=−1.9±0.2×10−3μ\eta_a=-1.9\pm0.2\times10^{-3} \mum2^2/V2^2. We also demonstrate electric-field driven dopant ionization in the SOI device layer, measured by electron spin resonance.Comment: 5 pages, 3 figure

    Capturing Hiproofs in HOL Light

    Full text link
    Hierarchical proof trees (hiproofs for short) add structure to ordinary proof trees, by allowing portions of trees to be hierarchically nested. The additional structure can be used to abstract away from details, or to label particular portions to explain their purpose. In this paper we present two complementary methods for capturing hiproofs in HOL Light, along with a tool to produce web-based visualisations. The first method uses tactic recording, by modifying tactics to record their arguments and construct a hierarchical tree; this allows a tactic proof script to be modified. The second method uses proof recording, which extends the HOL Light kernel to record hierachical proof trees alongside theorems. This method is less invasive, but requires care to manage the size of the recorded objects. We have implemented both methods, resulting in two systems: Tactician and HipCam

    The possible origin of the faint fuzzy star clusters in NGC 1023

    Get PDF
    In the lenticular galaxy NGC 1023 a new population of star clusters (``faint fuzzies'') was recently discovered by Larsen & Brodie. These clusters are found inside the disc and are faint (23 < V < 24 mag) and extended with effective radii of r_eff approx. 7 to 15 pc. We present here N-body calculations of a likely formation-scenario through merging star clusters in clusters of star clusters (super-clusters). Such super-clusters are observed to form in interacting galaxies. The resulting merger objects have masses comparable to the ``faint fuzzies'' and show large effective radii (r_eff > 7 pc). Even though these objects are suffering from strong tidal forces they are able to survive and reach the estimated ages of the extended star clusters in NGC 1023.Comment: 19 pages, 12 figures, accepted by A

    Kinetic Theory of Collisionless Self-Gravitating Gases: Post-Newtonian Polytropes

    Get PDF
    In this paper we study the kinetic theory of many-particle astrophysical systems and we present a consistent version of the collisionless Boltzmann equation in the 1PN approximation. We argue that the equation presented by Rezania and Sobouti in A&A 354 1110 (2000) is not the correct expression to describe the evolution of a collisionless self-gravitating gas. One of the reasons that account for the previous statement is that the energy of a free-falling test particle, obeying the 1PN equations of motion for static gravitational fields, is not a static solution of the mentioned equation. The same statement holds for the angular momentum, in the case of spherical systems. We provide the necessary corrections and obtain an equation that is consistent with the corresponding equations of motion and the 1PN conserved quantities. We suggest some potential relevance for the study of high density astrophysical systems and as an application we construct the corrected version of the post-Newtonian polytropes.Comment: 23 pages, 24 figures. Accepted for publication in PR
    • …
    corecore