1,250 research outputs found

    Laboratory measurements of polar stratospheric cloud rate parameters

    Get PDF
    It is now clear that heterogeneous reactions play an important role in controlling the concentration of ozone in the stratosphere. In this work, the loss of N2O5 on ice substrates has been studied in a flow reactor in an attempt to gain a more fundamental understanding of these reactions. The apparent reaction probability in this system was found to decrease as the substrate was exposed to N2O5. A model which corrected for the loss of surface sites was developed and although it appears to fit the data for a given experiment quite well, it is concluded that the loss of reactive sites is not the full explanation. In addition, the results of an experimental and modeling study suggest that reaction on the internal surface of the ice substrates is not a major loss mechanism for N2O5 in the current work

    Spin-Orbit Coupling in Iridium-Based 5d Compounds Probed by X-ray Absorption Spectroscopy

    Full text link
    We have performed x-ray absorption spectroscopy (XAS) measurements on a series of Ir-based 5d transition metal compounds, including Ir, IrCl3, IrO2, Na2IrO3, Sr2IrO4, and Y2Ir2O7. By comparing the intensity of the "white-line" features observed at the Ir L2 and L3 absorption edges, it is possible to extract valuable information about the strength of the spin-orbit coupling in these systems. We observe remarkably large, non-statistical branching ratios in all Ir compounds studied, with little or no dependence on chemical composition, crystal structure, or electronic state. This result confirms the presence of strong spin-orbit coupling effects in novel iridates such as Sr2IrO4, Na2IrO3, and Y2Ir2O7, and suggests that even simple Ir-based compounds such as IrO2 and IrCl3 may warrant further study. In contrast, XAS measurements on Re-based 5d compounds, such as Re, ReO2, ReO3, and Ba2FeReO6, reveal statistical branching ratios and negligible spin-orbit coupling effects.Comment: 9 pages, 4 figure

    Antarctic Ocean and Sea Ice Response to Ozone Depletion: A Two-Time-Scale Problem

    Get PDF
    The response of the Southern Ocean to a repeating seasonal cycle of ozone loss is studied in two coupled climate models and is found to comprise both fast and slow processes. The fast response is similar to the interannual signature of the southern annular mode (SAM) on sea surface temperature (SST), onto which the ozone hole forcing projects in the summer. It comprises enhanced northward Ekman drift, inducing negative summertime SST anomalies around Antarctica, earlier sea ice freeze-up the following winter, and northward expansion of the sea ice edge year-round. The enhanced northward Ekman drift, however, results in upwelling of warm waters from below the mixed layer in the region of seasonal sea ice. With sustained bursts of westerly winds induced by ozone hole depletion, this warming from below eventually dominates over the cooling from anomalous Ekman drift. The resulting slow time-scale response (years to decades) leads to warming of SSTs around Antarctica and ultimately a reduction in sea ice cover year-round. This two-time-scale behavior—rapid cooling followed by slow but persistent warming—is found in the two coupled models analyzed: one with an idealized geometry and the other with a complex global climate model with realistic geometry. Processes that control the time scale of the transition from cooling to warming and their uncertainties are described. Finally the implications of these results are discussed for rationalizing previous studies of the effect of the ozone hole on SST and sea ice extent.United States. National Aeronautics and Space Administration. Modeling, Analysis, and Prediction Program (Grant)National Science Foundation (U.S.) (Frontiers in Earth System Dynamics Project

    Exotic Kondo crossover in a wide temperature region in the topological Kondo insulator SmB6 revealed by high-resolution ARPES

    Full text link
    Temperature dependence of the electronic structure of SmB6 is studied by high-resolution ARPES down to 1 K. We demonstrate that there is no essential difference for the dispersions of the surface states below and above the resistivity saturating anomaly (~ 3.5 K). Quantitative analyses of the surface states indicate that the quasi-particle scattering rate increases linearly as a function of temperature and binding energy, which differs from Fermi-Liquid behavior. Most intriguingly, we observe that the hybridization between the d and f states builds gradually over a wide temperature region (30 K < T < 110 K). The surface states appear when the hybridization starts to develop. Our detailed temperature-dependence results give a complete interpretation of the exotic resistivity result of SmB6, as well as the discrepancies among experimental results concerning the temperature regions in which the topological surface states emerge and the Kondo gap opens, and give new insights into the exotic Kondo crossover and its relationship with the topological surface states in the topological Kondo insulator SmB6.Comment: 8 pages, 5 figure
    • …
    corecore