11 research outputs found

    A Detection of Sgr A* in the far infrared

    Get PDF
    We report the first detection of the Galactic Centre massive black hole, Sgr~A*, in the far infrared. Our measurements were obtained with PACS on board the \emph{Herschel} satellite at 100 μm100~\mathrm{\mu m} and 160 μm160~\mathrm{\mu m}. While the warm dust in the Galactic Centre is too bright to allow for a direct detection of Sgr~A*, we measure a significant and simultaneous variation of its flux of ΔFν=^160 μm=(0.27±0.06) Jy\Delta F_{\nu\widehat{=}160 ~\mathrm{\mu m}} = (0.27\pm0.06)~\mathrm{Jy} and ΔFν=^100 μm=(0.16±0.10) Jy\Delta F_{\nu\widehat{=}100 ~\mathrm{\mu m}}= (0.16\pm0.10)~\mathrm{Jy} during one observation. The significance level of the 160 μm160 ~\mathrm{\mu m} band variability is 4.5σ4.5\sigma and the corresponding 100 μm100 ~\mathrm{\mu m} band variability is significant at 1.6σ1.6\sigma. We find no example of an equally significant false positive detection. Conservatively assuming a variability of 25%25\% in the FIR, we can provide upper limits to the flux. Comparing the latter with theoretical models we find that 1D RIAF models have difficulties explaining the observed faintness. However, the upper limits are consistent with modern ALMA and VLA observations. Our upper limits provide further evidence for a spectral peak at 1012 Hz\sim 10^{12} ~ \mathrm{Hz} and constrain the number density of γ100\gamma \sim 100 electrons in the accretion disk and or outflow.Comment: accepted for publication in AP

    Testing General Relativity with the Shadow Size of Sgr

    Get PDF
    In general relativity, the angular radius of the shadow of a black hole is primarily determined by its mass-to-distance ratio and depends only weakly on its spin and inclination. If general relativity is violated, however, the shadow size may also depend strongly on parametric deviations from the Kerr metric. Based on a reconstructed image of Sagittarius A∗ (Sgr A∗) from a simulated one-day observing run of a seven-station Event Horizon Telescope (EHT) array, we employ a Markov chain Monte Carlo algorithm to demonstrate that such an observation can measure the angular radius of the shadow of Sgr A∗ with an uncertainty of ∼1.5 μas (6%). We show that existing mass and distance measurements can be improved significantly when combined with upcoming EHT measurements of the shadow size and that tight constraints on potential deviations from the Kerr metric can be obtained.Gordon and Betty Moore Foundation (Grant GBMF-3561

    Multiple star systems in the Orion nebula

    Get PDF
    This is the author accepted manuscript. The final fersion is available from EDP Sciences via the DOI in this record.This work presents an interferometric study of the massive-binary fraction in the Orion Trapezium cluster with the recently comissioned GRAVITY instrument. We observed a total of 16 stars of mainly OB spectral type. We find three previously unknown companions for θ1 Ori B, θ2 Ori B, and θ2 Ori C. We determined a separation for the previously suspected companion of NU Ori. We confirm four companions for θ1 Ori A, θ1 Ori C, θ1 Ori D, and θ2 Ori A, all with substantially improved astrometry and photometric mass estimates. We refined the orbit of the eccentric high-mass binary θ1 Ori C and we are able to derive a new orbit for θ1 Ori D. We find a system mass of 21.7 M⊙ and a period of 53 days. Together with other previously detected companions seen in spectroscopy or direct imaging, eleven of the 16 high-mass stars are multiple systems. We obtain a total number of 22 companions with separations up to 600 AU. The companion fraction of the early B and O stars in our sample is about two, significantly higher than in earlier studies of mostly OB associations. The separation distribution hints toward a bimodality. Such a bimodality has been previously found in A stars, but rarely in OB binaries, which up to this point have been assumed to be mostly compact with a tail of wider companions. We also do not find a substantial population of equal-mass binaries. The observed distribution of mass ratios declines steeply with mass, and like the direct star counts, indicates that our companions follow a standard power law initial mass function. Again, this is in contrast to earlier findings of flat mass ratio distributions in OB associations. We excluded collision as a dominant formation mechanism but find no clear preference for core accretion or competitive accretion.Marie Skłodowska-Curie Grant AgreementFCT-PortugalERC Starting Gran

    Imagerie spectro-interférométrique du noyau de η Car avec l'instrument GRAVITY : images de la zone de collision de vent dans les raies Br γ et He I avec une résolution de la milli-seconde d'arc

    No full text
    International audienceContext. η Car is one of the most intriguing luminous blue variables in the Galaxy. Observations and models of the X-ray, ultraviolet, optical, and infrared emission suggest a central binary in a highly eccentric orbit with a 5.54 yr period residing in its core. 2D and 3D radiative transfer and hydrodynamic simulations predict a primary with a dense and slow stellar wind that interacts with the faster and lower density wind of the secondary. The wind-wind collision scenario suggests that the secondary’s wind penetrates the primary’s wind creating a low-density cavity in it, with dense walls where the two winds interact. However, the morphology of the cavity and its physical properties are not yet fully constrained.Aims. We aim to trace the inner ∼5–50 au structure of η Car’s wind-wind interaction, as seen through Brγ and, for the first time, through the He I 2s-2p line.Methods. We have used spectro-interferometric observations with the K-band beam-combiner GRAVITY at the VLTI. The analyses of the data include (i) parametrical model-fitting to the interferometric observables, (ii) a CMFGEN model of the source’s spectrum, and (iii) interferometric image reconstruction.Results. Our geometrical modeling of the continuum data allows us to estimate its FWHM angular size close to 2 mas and an elongation ratio ϵ = 1.06 ± 0.05 over a PA = 130° ± 20°. Our CMFGEN modeling of the spectrum helped us to confirm that the role of the secondary should be taken into account to properly reproduce the observed Brγ and He I lines. Chromatic images across the Brγ line reveal a southeast arc-like feature, possibly associated to the hot post-shocked winds flowing along the cavity wall. The images of the He I 2s-2p line served to constrain the 20 mas (∼50 au) structure of the line-emitting region. The observed morphology of He I suggests that the secondary is responsible for the ionized material that produces the line profile. Both the Brγ and the He I 2s-2p maps are consistent with previous hydrodynamical models of the colliding wind scenario. Future dedicated simulations together with an extensive interferometric campaign are necessary to refine our constraints on the wind and stellar parameters of the binary, which finally will help us predict the evolutionary path of η Car.Contexte : η Car est une des étoiles brillantes bleues variables les plus intrigante de notre galaxie. Les observations et les modèles des émissions X, UV et optique et IR suggèrent qu'une étoile binaire avec une orbite fortement excentrique de période 5,54 ans réside au centre de son coeur. Les simulations hydrodynamiques et de transfert radiatif 2D et 3D prédisent la présence d'une étoile primaire avec vent stellaire dense et lent, qui interagit avec le vent de densité moindre et plus rapide de l'étoile secondaire. Ce scénario de collision vent-vent suggère que le vent de l'étoile secondaire pénètre dans le vent de l'étoile primaire, créant dans ce dernier une cavité de faible densité, avec des murs denses où les deux vents interagissent. Cependant, la morphologie de cette cavité et ses propriétés physiques ne sont pas encore pleinement contraints.Objectifs. Nous visons à déterminer la structure interne de l’interaction vent-vent de Car dans une zone allant de 5 à 50 Unités Astronomiques, telle que vue à travers Br γ et, pour la première fois, à travers la transition 2s-2p de He I.Méthodes : Nous avons utilisé des observations spectro-interférométriques du combineur de faisceaux en bande K de GRAVITY au VLTI. Les analyses des données comprennent: (i) un ajustement de modèle paramétrique aux observables interférométriques, (ii) un modèle CMFGEN du spectre de la source, et (iii) des reconstructions d'image interférométriques.Résultats : Notre modélisation géométrique des données du continuum nous permet d'estimer sa taille angulaire FWHM proche de 2 mas et son coefficient d'allongement de 1,06 ± 0,05 sur un PA = 130° ± 20°. Notre modélisation CMFGEN du spectre nous a permis de confirmer que le rôle de l'étoile secondaire devrait être pris en compte pour reproduire correctement les émissions Br γ et He I observées. Les images spectrales dans la bande Br γ révèle une caractéristique semblable à un arc au sud-est, peut-être associé aux vents chauds post-choc circulant le long du mur de la cavité. Les images dans la bande He I 2s-2p ont servi à contraindre la structure de la région d'émission de la transition, avec une résolution de 20 millisecondes d'arc (50 UA). La morphologie observée de He I suggère que l'étoile secondaire est responsable de l'ionisationproduisant le profil de raie. Les deux images (en Br γ et He I 2s-2p) sont compatibles avec les modèles hydrodynamiques précédents du scénario de vent en collision. De futures simulations dédiées ainsi qu’une vaste campagne interférométrique sont nécessaires pour affiner nos contraintes sur le vent et les paramètres stellaires de la binaire, ce qui nous aidera enfin à prédire le chemin évolutif de η Car
    corecore