64 research outputs found
Pneumococcal carriage following PCV13 delivered as one primary and one booster dose (1 + 1) compared to two primary doses and a booster (2 + 1) in UK infants
In January 2020 the UK changed from a 2 + 1 schedule for 13-valent pneumococcal conjugate vaccine (PCV13) to a 1 + 1 schedule (doses at 3 and 12 months) based on a randomized immunogenicity trial comparing the two schedules. Carriage prevalence measured at the time of booster and 6 months later in 191 of the 213 study infants was 57 % (109/191) and 60 % (114/190) respectively. There were eight episodes of vaccine-type (VT) or vaccine-related 6C carriage in the 2 + 1 and six in the 1 + 1 group; ≥4-fold rises in serotype-specific IgG in 71 children with paired post-booster and follow up blood samples at 21–33 months of age were found in 20 % (7/35) of the 2 + 1 and 15 % (6/41) of the 1 + 1 group. VTs identified in carriage and inferred from serology were similar comprising 3, 19A and 19F. Dropping a priming dose from the 2 + 1 PCV 13 schedule did not increase VT carriage in the study cohort. Ongoing population level carriage studies will be important to confirm this
'Be on the TEAM' Study (Teenagers Against Meningitis): protocol for a controlled clinical trial evaluating the impact of 4CMenB or MenB-fHbp vaccination on the pharyngeal carriage of meningococci in adolescents.
INTRODUCTION: Capsular group B Neisseria meningitidis (MenB) is the most common cause of invasive meningococcal disease (IMD) in many parts of the world. A MenB vaccine directed against the polysaccharide capsule remains elusive due to poor immunogenicity and safety concerns. The vaccines licensed for the prevention of MenB disease, 4CMenB (Bexsero) and MenB-fHbp (Trumenba), are serogroup B 'substitute' vaccines, comprised of subcapsular proteins and are designed to provide protection against most MenB disease-causing strains. In many high-income countries, such as the UK, adolescents are at increased risk of IMD and have the highest rates of meningococcal carriage. Beginning in the late 1990s, immunisation of this age group with the meningococcal group C conjugate vaccine reduced asymptomatic carriage and disrupted transmission of this organism, resulting in lower group C IMD incidence across all age groups. Whether vaccinating teenagers with the novel 'MenB' protein-based vaccines will prevent acquisition or reduce duration of carriage and generate herd protection was unknown at the time of vaccine introduction and could not be inferred from the effects of the conjugate vaccines. 4CMenB and MenB-fHbp may also impact on non-MenB disease-causing capsular groups as well as commensal Neisseria spp. This study will evaluate the impact of vaccination with 4CMenB or MenB-fHbp on oropharyngeal carriage of pathogenic meningococci in teenagers, and consequently the potential for these vaccines to provide broad community protection against MenB disease. METHODS AND ANALYSIS: The 'Be on the TEAM' (Teenagers Against Meningitis) Study is a pragmatic, partially randomised controlled trial of 24 000 students aged 16-19 years in their penultimate year of secondary school across the UK with regional allocation to a 0+6 month schedule of 4CMenB or MenB-fHbp or to a control group. Culture-confirmed oropharyngeal carriage will be assessed at baseline and at 12 months, following which the control group will be eligible for 4CMenB vaccination. The primary outcome is the carriage prevalence of potentially pathogenic meningococci (defined as those with genogroups B, C, W, Y or X), in each vaccine group compared separately to the control group at 12 months post-enrolment, that is, 12 months after the first vaccine dose and 6 months after the second vaccine dose. Secondary outcomes include impact on carriage of: genogroup B meningococci; hyperinvasive meningococci; all meningococci; those meningococci expressing vaccine antigens and; other Neisseria spp. A sample size of 8000 in each arm will provide 80% power to detect a 30% reduction in meningococcal carriage, assuming genogroup B, C, W, Y or X meningococci carriage of 3.43%, a design effect of 1.5, a retention rate of 80% and a significance level of 0.05. Study results will be available in 2021 and will inform the UK and international immunisation policy and future vaccine development. ETHICS AND DISSEMINATION: This study is approved by the National Health Service South Central Research Ethics Committee (18/SC/0055); the UK Health Research Authority (IRAS ID 239091) and the UK Medicines and Healthcare products Regulatory Agency. Publications arising from this study will be submitted to peer-reviewed journals. Study results will be disseminated in public forums, online, presented at local and international conferences and made available to the participating schools. TRIAL REGISTRATION NUMBERS: ISRCTN75858406; Pre-results, EudraCT 2017-004609-42
Nasopharyngeal carriage of pneumococcus in children in England up to 10 years after 13-valent pneumococcal conjugate vaccine introduction: persistence of serotypes 3 and 19A and emergence of 7C
Background:Â Monitoring changes in pharyngeal carriage of pneumococcus in children following 13-valent pneumococcal conjugate vaccine (PCV13) introduction in the United Kingdom in 2010 informs understanding of patterns of invasive pneumococcal disease (IPD) incidence.
Methods: Nasopharyngeal swabs from healthy children vaccinated with PCV13 according to schedule (2, 4, and 12 months) were cultured and serotyped. Results for children aged 13–48 months were compared between 2014–2015 and 2017–2019 and with children aged 6–12 months (2017–2020). Blood was obtained from a subset of children for pneumococcal serotype-specific immunoglobulin G (IgG).
Results: Total pneumococcal carriage at 13–48 months was 47.9% (473/988) in 2014–2015 and 51.8% (412/795) in 2017–2019 (P = .10); at age 6–12 months this value was 44.6% (274/615). In 2017–2019, 2.9% (95% confidence interval, 1.8%–4.3%) of children aged 13–48 months carried PCV13 serotypes (mainly 3 [1.5%] and 19A [0.8%]) and >20% carried the additional 20-valent PCV (PCV20) serotypes. Similar proportions of children had IgG ≥0.35 IU/mL for each serotype in 2014–2015 and 2017–2019. Serotype 7C carriage increased significantly (P < .01) between 2014–2015 and 2017–2019. Carriage of PCV20 serotypes 8 and 12F, both major causes of IPD, was rare.
Conclusions:Â Introduction of PCV20, if licensed for children, could significantly change the composition of pneumococcal serotypes carried in the pharynx of UK children.
Clinical Trials Registration:Â NCT03102840
Community seroprevalence of SARS-CoV-2 in children and adolescents in England, 2019–2021
Objective:Â To understand community seroprevalence of SARS-CoV-2 in children and adolescents. This is vital to understanding the susceptibility of this cohort to COVID-19 and to inform public health policy for disease control such as immunisation.
Design: We conducted a community-based cross-sectional seroprevalence study in participants aged 0–18 years old recruiting from seven regions in England between October 2019 and June 2021 and collecting extensive demographic and symptom data. Serum samples were tested for antibodies against SARS-CoV-2 spike and nucleocapsid proteins using Roche assays processed at UK Health Security Agency laboratories. Prevalence estimates were calculated for six time periods and were standardised by age group, ethnicity and National Health Service region.
Results: Post-first wave (June–August 2020), the (anti-spike IgG) adjusted seroprevalence was 5.2%, varying from 0.9% (participants 10–14 years old) to 9.5% (participants 5–9 years old). By April–June 2021, this had increased to 19.9%, varying from 13.9% (participants 0–4 years old) to 32.7% (participants 15–18 years old). Minority ethnic groups had higher risk of SARS-CoV-2 seropositivity than white participants (OR 1.4, 95% CI 1.0 to 2.0), after adjusting for sex, age, region, time period, deprivation and urban/rural geography. In children <10 years, there were no symptoms or symptom clusters that reliably predicted seropositivity. Overall, 48% of seropositive participants with complete questionnaire data recalled no symptoms between February 2020 and their study visit.
Conclusions: Approximately one-third of participants aged 15–18 years old had evidence of antibodies against SARS-CoV-2 prior to the introduction of widespread vaccination. These data demonstrate that ethnic background is independently associated with risk of SARS-CoV-2 infection in children.
Trial registration number:Â NCT04061382
Serum HCoV-spike specific antibodies do not protect against subsequent SARS-CoV-2 infection in children and adolescents
SARS-CoV-2 infections in children are generally asymptomatic or mild and rarely progress to severe disease and hospitalization. Why this is so remains unclear. Here we explore the potential for protection due to pre-existing cross-reactive seasonal coronavirus antibodies and compare the rate of antibody decline for nucleocapsid and spike protein in serum and oral fluid against SARS-CoV-2 within the pediatric population. No differences in seasonal coronaviruses antibody concentrations were found at baseline between cases and controls, suggesting no protective effect from pre-existing immunity against seasonal coronaviruses. Antibodies against seasonal betacoronaviruses were boosted in response to SARS-CoV-2 infection. In serum, anti-nucleocapsid antibodies fell below the threshold of positivity more quickly than anti-spike protein antibodies. These findings add to our understanding of protection against infection with SARS-CoV-2 within the pediatric population, which is important when considering pediatric SARS-CoV-2 immunization policies
Booster Vaccination Against SARS-CoV-2 Induces Potent Immune Responses in People With Human Immunodeficiency Virus
Background: People with human immunodeficiency virus (HIV) on antiretroviral therapy (ART) with good CD4 T-cell counts make effective immune responses following vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). There are few data on longer term responses and the impact of a booster dose. Methods: Adults with HIV were enrolled into a single arm open label study. Two doses of ChAdOx1 nCoV-19 were followed 12 months later by a third heterologous vaccine dose. Participants had undetectable viraemia on ART and CD4 counts >350 cells/μL. Immune responses to the ancestral strain and variants of concern were measured by anti-spike immunoglobulin G (IgG) enzyme-linked immunosorbent assay (ELISA), MesoScale Discovery (MSD) anti-spike platform, ACE-2 inhibition, activation induced marker (AIM) assay, and T-cell proliferation. Findings: In total, 54 participants received 2 doses of ChAdOx1 nCoV-19. 43 received a third dose (42 with BNT162b2; 1 with mRNA-1273) 1 year after the first dose. After the third dose, total anti-SARS-CoV-2 spike IgG titers (MSD), ACE-2 inhibition, and IgG ELISA results were significantly higher compared to Day 182 titers (P <. 0001 for all 3). SARS-CoV-2 specific CD4+ T-cell responses measured by AIM against SARS-CoV-2 S1 and S2 peptide pools were significantly increased after a third vaccine compared to 6 months after a first dose, with significant increases in proliferative CD4+ and CD8+ T-cell responses to SARS-CoV-2 S1 and S2 after boosting. Responses to Alpha, Beta, Gamma, and Delta variants were boosted, although to a lesser extent for Omicron. Conclusions: In PWH receiving a third vaccine dose, there were significant increases in B- and T-cell immunity, including to known variants of concern (VOCs)
Booster vaccination against SARS-CoV-2 induces potent immune responses in people with human immunodeficiency virus
Background
People with human immunodeficiency virus (HIV) on antiretroviral therapy (ART) with good CD4 T-cell counts make effective immune responses following vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). There are few data on longer term responses and the impact of a booster dose.
Methods
Adults with HIV were enrolled into a single arm open label study. Two doses of ChAdOx1 nCoV-19 were followed 12 months later by a third heterologous vaccine dose. Participants had undetectable viraemia on ART and CD4 counts >350 cells/µL. Immune responses to the ancestral strain and variants of concern were measured by anti-spike immunoglobulin G (IgG) enzyme-linked immunosorbent assay (ELISA), MesoScale Discovery (MSD) anti-spike platform, ACE-2 inhibition, activation induced marker (AIM) assay, and T-cell proliferation.
Findings
In total, 54 participants received 2 doses of ChAdOx1 nCoV-19. 43 received a third dose (42 with BNT162b2; 1 with mRNA-1273) 1 year after the first dose. After the third dose, total anti-SARS-CoV-2 spike IgG titers (MSD), ACE-2 inhibition, and IgG ELISA results were significantly higher compared to Day 182 titers (P < .0001 for all 3). SARS-CoV-2 specific CD4+ T-cell responses measured by AIM against SARS-CoV-2 S1 and S2 peptide pools were significantly increased after a third vaccine compared to 6 months after a first dose, with significant increases in proliferative CD4+ and CD8+ T-cell responses to SARS-CoV-2 S1 and S2 after boosting. Responses to Alpha, Beta, Gamma, and Delta variants were boosted, although to a lesser extent for Omicron.
Conclusions
In PWH receiving a third vaccine dose, there were significant increases in B- and T-cell immunity, including to known variants of concern (VOCs)
Persistence of immune response in heterologous COVID vaccination schedules in the Com-COV2 study - a single-blind, randomised trial incorporating mRNA, viral-vector and protein-adjuvant vaccines
BACKGROUND: Heterologous COVID vaccine priming schedules are immunogenic and effective. This report aims to understand the persistence of immune response to the viral vectored, mRNA and protein-based COVID-19 vaccine platforms used in homologous and heterologous priming combinations, which will inform the choice of vaccine platform in future vaccine development. METHODS: Com-COV2 was a single-blinded trial in which adults ≥50 years, previously immunised with single dose 'ChAd' (ChAdOx1 nCoV-19, AZD1222, Vaxzevria, Astrazeneca) or 'BNT' (BNT162b2, tozinameran, Comirnaty, Pfizer/BioNTech), were randomised 1:1:1 to receive a second dose 8-12 weeks later with either the homologous vaccine, or 'Mod' (mRNA-1273, Spikevax, Moderna) or 'NVX' (NVX-CoV2373, Nuvaxovid, Novavax). Immunological follow-up and the secondary objective of safety monitoring were performed over nine months. Analyses of antibody and cellular assays were performed on an intention-to-treat population without evidence of COVID-19 infection at baseline or for the trial duration. FINDINGS: In April/May 2021, 1072 participants were enrolled at a median of 9.4 weeks after receipt of a single dose of ChAd (N= 540, 45% female) or BNT (N=532, 39% female) as part of the national vaccination programme. In ChAd-primed participants, ChAd/Mod had the highest anti-spike IgG from day 28 through to 6 months, although the heterologous vs homologous geometric mean ratio (GMR) dropped from 9.7 (95%CI: 8.2,11.5) at D28 to 6.2 (95%CI: 5.0, 7.7) at D196. The heterologous/homologous GMR for ChAd/NVX similarly dropped from 3.0 (95%CI:2.5-3.5) to 2.4 (95%CI:1.9-3.0). In BNT-primed participants, decay was similar between heterologous and homologous schedules with BNT/Mod inducing the highest anti-spike IgG for the duration of follow-up. The aGMR for BNT/Mod compared with BNT/BNT increased from 1.36 (95%CI: 1.17, 1.58) at D28 to 1.52 (95%CI: 1.21, 1.90) at D196, whilst for BNT/NVX this aGMR was 0.55 (95%CI: 0.47, 0.64) at day 28 and 0.62 (95%CI: 0.49, 0.78) at day 196. Heterologous ChAd-primed schedules produced and maintained the largest T-cell responses until D196. Immunisation with BNT/NVX generated a qualitatively different antibody response to BNT/BNT, with the total IgG significantly lower than BNT/BNT during all follow-up time points, but similar levels of neutralising antibodies. INTERPRETATION: Heterologous ChAd-primed schedules remain more immunogenic over time in comparison to ChAd/ChAd. BNT-primed schedules with a second dose of either mRNA vaccine also remain more immunogenic over time in comparison to BNT/NVX. The emerging data on mixed schedules using the novel vaccine platforms deployed in the COVID-19 pandemic, suggest that heterologous priming schedules might be considered as a viable option sooner in future pandemics. ISRCTN: 27841311 EudraCT:2021-001275-16 FUNDING: UK Vaccine Task Force (VTF), Coalition for Epidemic Preparedness Innovations (CEPI) and National Institute for Health and Carte Research (NIHR). NVX was supplied for trial use by Novavax, Inc
Correlates of protection against symptomatic and asymptomatic SARS-CoV-2 infection
The global supply of COVID-19 vaccines remains limited. An understanding of the immune response that is predictive of protection could facilitate rapid licensure of new vaccines. Data from a randomized efficacy trial of the ChAdOx1 nCoV-19 (AZD1222) vaccine in the United Kingdom was analyzed to determine the antibody levels associated with protection against SARS-CoV-2. Binding and neutralizing antibodies at 28 days after the second dose were measured in infected and noninfected vaccine recipients. Higher levels of all immune markers were correlated with a reduced risk of symptomatic infection. A vaccine efficacy of 80% against symptomatic infection with majority Alpha (B.1.1.7) variant of SARS-CoV-2 was achieved with 264 (95% CI: 108, 806) binding antibody units (BAU)/ml: and 506 (95% CI: 135, not computed (beyond data range) (NC)) BAU/ml for anti-spike and anti-RBD antibodies, and 26 (95% CI: NC, NC) international unit (IU)/ml and 247 (95% CI: 101, NC) normalized neutralization titers (NF) for pseudovirus and live-virus neutralization, respectively. Immune markers were not correlated with asymptomatic infections at the 5% significance level. These data can be used to bridge to new populations using validated assays, and allow extrapolation of efficacy estimates to new COVID-19 vaccines
- …