239 research outputs found
Bipolar spin blockade and coherent state superpositions in a triple quantum dot
Spin qubits based on interacting spins in double quantum dots have been
successfully demonstrated. Readout of the qubit state involves a conversion of
spin to charge information, universally achieved by taking advantage of a spin
blockade phenomenon resulting from Pauli's exclusion principle. The archetypal
spin blockade transport signature in double quantum dots takes the form of a
rectified current. Currently more complex spin qubit circuits including triple
quantum dots are being developed. Here we show both experimentally and
theoretically (a) that in a linear triple quantum dot circuit, the spin
blockade becomes bipolar with current strongly suppressed in both bias
directions and (b) that a new quantum coherent mechanism becomes relevant.
Within this mechanism charge is transferred non-intuitively via coherent states
from one end of the linear triple dot circuit to the other without involving
the centre site. Our results have implications in future complex
nano-spintronic circuits.Comment: 21 pages, 7 figure
Effects of noise on hysteresis and resonance width in graphene and nanotubes resonators
We investigate the role that noise plays in the hysteretic dynamics of a
suspended nanotube or a graphene sheet subject to an oscillating force. We find
that not only the size but also the position of the hysteresis region in these
systems can be controlled by noise. We also find that nano-resonators act as
noise rectifiers: by increasing the noise in the setup, the resonance width of
the characteristic peak in these systems is reduced and, as a result, the
quality factor is increased.Comment: 15 pages, 6 figures. Sent to PRB (in revision
Gain in quantum cascade lasers and superlattices: A quantum transport theory
Gain in current-driven semiconductor heterostructure devices is calculated
within the theory of nonequilibrium Green functions. In order to treat the
nonequilibrium distribution self-consistently the full two-time structure of
the theory is employed without relying on any sort of Kadanoff-Baym Ansatz. The
results are independent of the choice of the electromagnetic field if the
variation of the self-energy is taken into account. Excellent quantitative
agreement is obtained with the experimental gain spectrum of a quantum cascade
laser. Calculations for semiconductor superlattices show that the simple 2-time
miniband transport model gives reliable results for large miniband widths at
room temperatureComment: 8 Pages, 4 Figures directly included, to appear in Physical Review
Localization properties of driven disordered one-dimensional systems
We generalize the definition of localization length to disordered systems
driven by a time-periodic potential using a Floquet-Green function formalism.
We study its dependence on the amplitude and frequency of the driving field in
a one-dimensional tight-binding model with different amounts of disorder in the
lattice. As compared to the autonomous system, the localization length for the
driven system can increase or decrease depending on the frequency of the
driving. We investigate the dependence of the localization length with the
particle's energy and prove that it is always periodic. Its maximum is not
necessarily at the band center as in the non-driven case. We study the
adiabatic limit by introducing a phenomenological inelastic scattering rate
which limits the delocalizing effect of low-frequency fields.Comment: Accepted for publication in European Physical Journal
Coherent and sequential photoassisted tunneling through a semiconductor double barrier structure
We have studied the problem of coherent and sequential tunneling through a
double barrier structure, assisted by light considered to be present All over
the structure, i,e emitter, well and collector as in the experimental evidence.
By means of a canonical transformation and in the framework of the time
dependent perturbation theory, we have calculated the transmission coefficient
and the electronic resonant current. Our calculations have been compared with
experimental results turning out to be in good agreement. Also the effect on
the coherent tunneling of a magnetic field parallel to the current in the
presence of light, has been considered.Comment: Revtex3.0, 8figures uuencoded compressed tar-fil
Recommended from our members
Fabrication and properties of erbium oxide
Erbium oxide (Er{sub 2}O{sub 3}) is a rare earth oxide of interest because of its chemical and thermal stability and high melting point, 2,430 C. However, there is relatively little information available regarding the relation between the structure and the mechanical properties of this material. A densification study of polycrystalline erbium oxide powders is reported here. Erbium oxide pellets were uniaxially pressed (40--280 MPa) and sintered (1,500--1,800 C) in order to obtain density data for as-received commercial powders. In addition, the particle size and distribution of as-received powders were varied by milling and the effects on densification were studied. The powders were characterized for particle size, phase and impurity content and surface area. The mechanical properties of high density sintered erbium oxide bodies were characterized using indentation hardness and toughness as a function of temperature and microstructure. Relations between the microstructure and mechanical properties are described
Quasiperiodic time dependent current in driven superlattices: distorted Poincare maps and strange attractors
Intriguing routes to chaos have been experimentally observed in semiconductor
superlattices driven by an ac field. In this work, a theoretical model of time
dependent transport in ac driven superlattices is numerically solved. In
agreement with experiments, distorted Poincare maps in the quasiperiodic regime
are found. They indicate the appearance of very complex attractors and routes
to chaos as the amplitude of the AC signal increases. Distorted maps are caused
by the discrete well-to-well jump motion of a domain wall during spiky
high-frequency self-sustained oscillations of the current.Comment: 10 pages, 4 figure
Canted phase in double quantum dots
We perform a Hartree-Fock calculation in order to describe the ground state
of a vertical double quantum dot in the absence of magnetic fields parallel to
the growth direction. Intra- and interdot exchange interactions determine the
singlet or triplet character of the system as the tunneling is tuned. At finite
Zeeman splittings due to in-plane magnetic fields, we observe the continuous
quantum phase transition from ferromagnetic to symmetric phase through a canted
antiferromagnetic state. The latter is obtained even at zero Zeeman energy for
an odd electron number.Comment: 5 pages, 3 figure
Temperature dependence of current self-oscillations and electric field domains in sequential tunneling doped superlattices
We examine how the current--voltage characteristics of a doped weakly coupled
superlattice depends on temperature. The drift velocity of a discrete drift
model of sequential tunneling in a doped GaAs/AlAs superlattice is calculated
as a function of temperature. Numerical simulations and theoretical arguments
show that increasing temperature favors the appearance of current
self-oscillations at the expense of static electric field domain formation. Our
findings agree with available experimental evidence.Comment: 7 pages, 5 figure
- …