693 research outputs found
Task-Projected Hyperdimensional Computing for Multi-Task Learning
Brain-inspired Hyperdimensional (HD) computing is an emerging technique for
cognitive tasks in the field of low-power design. As a fast-learning and
energy-efficient computational paradigm, HD computing has shown great success
in many real-world applications. However, an HD model incrementally trained on
multiple tasks suffers from the negative impacts of catastrophic forgetting.
The model forgets the knowledge learned from previous tasks and only focuses on
the current one. To the best of our knowledge, no study has been conducted to
investigate the feasibility of applying multi-task learning to HD computing. In
this paper, we propose Task-Projected Hyperdimensional Computing (TP-HDC) to
make the HD model simultaneously support multiple tasks by exploiting the
redundant dimensionality in the hyperspace. To mitigate the interferences
between different tasks, we project each task into a separate subspace for
learning. Compared with the baseline method, our approach efficiently utilizes
the unused capacity in the hyperspace and shows a 12.8% improvement in averaged
accuracy with negligible memory overhead.Comment: To be published in 16th International Conference on Artificial
Intelligence Applications and Innovation
Fermi Surface and Quasiparticle Excitations of overdoped Tl2Ba2CuO6+d by ARPES
The electronic structure of the high-T_c superconductor Tl2Ba2CuO6+d is
studied by ARPES. For a very overdoped Tc=30K sample, the Fermi surface
consists of a single large hole pocket centered at (pi,pi) and is approaching a
topological transition. Although a superconducting gap with d_x^2-y^2 symmetry
is tentatively identified, the quasiparticle evolution with momentum and
binding energy exhibits a marked departure from the behavior observed in under
and optimally doped cuprates. The relevance of these findings to scattering,
many-body, and quantum-critical phenomena is discussed.Comment: Revised manuscript, in press on PRL. A high-resolution version can be
found at
http://www.physics.ubc.ca/~quantmat/ARPES/PUBLICATIONS/Articles/Tl2201_LE.pdf
and related material at
http://www.physics.ubc.ca/~quantmat/ARPES/PUBLICATIONS/articles.htm
Accelerated Particle Swarm Optimization and Support Vector Machine for Business Optimization and Applications
Business optimization is becoming increasingly important because all business
activities aim to maximize the profit and performance of products and services,
under limited resources and appropriate constraints. Recent developments in
support vector machine and metaheuristics show many advantages of these
techniques. In particular, particle swarm optimization is now widely used in
solving tough optimization problems. In this paper, we use a combination of a
recently developed Accelerated PSO and a nonlinear support vector machine to
form a framework for solving business optimization problems. We first apply the
proposed APSO-SVM to production optimization, and then use it for income
prediction and project scheduling. We also carry out some parametric studies
and discuss the advantages of the proposed metaheuristic SVM.Comment: 12 page
Geometric representations for minimalist grammars
We reformulate minimalist grammars as partial functions on term algebras for
strings and trees. Using filler/role bindings and tensor product
representations, we construct homomorphisms for these data structures into
geometric vector spaces. We prove that the structure-building functions as well
as simple processors for minimalist languages can be realized by piecewise
linear operators in representation space. We also propose harmony, i.e. the
distance of an intermediate processing step from the final well-formed state in
representation space, as a measure of processing complexity. Finally, we
illustrate our findings by means of two particular arithmetic and fractal
representations.Comment: 43 pages, 4 figure
The Emergence of Miller's Magic Number on a Sparse Distributed Memory
Human memory is limited in the number of items held in one's mind—a limit known as “Miller's magic number”. We study the emergence of such limits as a result of the statistics of large bitvectors used to represent items in memory, given two postulates: i) the Sparse Distributed Memory; and ii) chunking through averaging. Potential implications for theoretical neuroscience are discussed
Co-expression of vascular endothelial growth factor (VEGF) and its receptors (flk-1 and flt-1) in hormone-induced mammary cancer in the Noble rat
Vascular endothelial growth factor (VEGF) is recognized to play a predominant role in breast cancer prognosis. The action of VEGF is mediated by two high-affinity receptors with ligand-stimulated tyrosine kinase activity: VEGFR-1/flt-1 and VEGFR-2/flk-1, which are expressed mainly in vascular endothelial cells. To the best of our knowledge, no previous studies on the expression of these receptors in breast cancer cells has been made. We have established a new animal model for breast cancer, using a combination of 17β-oestradiol and testosterone as ‘carcinogens’. Taking advantage of the animal model, we have demonstrated that mammary cancer cells expressed not only high levels of VEGF but also, surprisingly, its receptors (flt-1 and flk-1) in mammary cancer cells. Intense reactivities to VEGF, flt-1 and flk-1 were observed in mammary cancer cells, especially in invasive mammary carcinoma. Western blot analysis confirmed the increase in flk-1 and flt-1 proteins in induced mammary cancers. Based on these observations, we hypothesize that in mammary cancer, VEGF regulates, in addition to endothelial proliferation and angiogenesis, also growth of cancer cells by an autocrine mechanism mediated through its receptors. To further verify this hypothesis, we investigated the correlation between cellular proliferation and the expression of VEGF, flt-1 and flk-1. Using double-labelling immunocytochemistry, we have shown a correlation between high VEGF activity and Ki-67 expression. The Ki-67 indices in the areas of strong and weak VEGF reactivities were 58.3% and 3.7% respectively. Similarly, there was also a correlation of strong flk-1 and Ki-67 reactivity. The Ki-67 indices for areas of strong and weak flk-1 reactivities were 53.9% and 3.1% respectively. On the other hand, there was a reverse correlation between flt-1 and Ki-67 activities. These results indicate that overexpression of VEGF and flk-1 is correlated with high Ki-67 index. The data, therefore, suggest that VEGF may act as an autocrine growth factor for mammary cancer cells in vivo and this autocrine regulatory role may be mediated through flk-1. The present study is the first report showing that VEGF may act as a growth stimulator for mammary cancer cells. © 1999 Cancer Research Campaig
The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope: III. Integral-field spectroscopy
The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope
(JWST) offers the first opportunity to use integral-field spectroscopy from
space at near-infrared wavelengths. More specifically, NIRSpec's integral-field
unit can obtain spectra covering the wavelength range m for a
contiguous 3.1 arcsec 3.2 arcsec sky area at spectral resolutions of
, 1000, and 2700. In this paper we describe the optical and
mechanical design of the NIRSpec integral-field spectroscopy mode, together
with its expected performance. We also discuss a few recommended observing
strategies, some of which are driven by the fact that NIRSpec is a multipurpose
instrument with a number of different observing modes, which are discussed in
companion papers. We briefly discuss the data processing steps required to
produce wavelength- and flux-calibrated data cubes that contain the spatial and
spectral information. Lastly, we mention a few scientific topics that are bound
to benefit from this highly innovative capability offered by JWST/NIRSpec
The impact of hyperbaric oxygen therapy on serological values of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF)
<p>Abstract</p> <p>Background</p> <p>Hyperbaric oxygen (HBO) therapy is an effective adjunct treatment for ischemic disorders such as chronic infection or chronic wounds. It combines hyperoxic effects with the stimulating potential of post-therapeutic reactive hypoxia. As its crucial effects, stimulation of fibroblast growth, induction of collagen synthesis and the initiation of angiogenesis are discussed. Angiogenesis is a multistage process resulting in the growth of blood vessels. It includes degradation of extracellular matrix, proliferation and migration of different cell populations and finally formation of new vessel structures. This complex chain of procedures is orchestrated by different cytokines and growth factors. Crucial mediators of angiogenesis are basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF); their <it>in-vivo </it>function is still not fully understood.</p> <p>Methods</p> <p>Forty-three patients suffering from sudden sensorineural hearing loss or tinnitus were treated with HBO. The therapy included 10 sessions of 90 minutes each, one session a day. Serological levels of bFGF and VEGF were assessed by enzyme-linked immunosorbent assays performed according to the manufacturer's instructions on day 1, 2, 5 and 10 of HBO therapy and were compared to mean values of the control group, related to the patient's age and sex, and their development observed over the ten days of HBO.</p> <p>Results</p> <p>There was no sex- or age dependency of bFGF observed in the present study, whereas under HBO our results showed a significant mitigation of the bFGF concentration. In the present data, there was no connection between the VEGF concentration and the patients' ages. Women showed significantly higher levels of VEGF. There was no significant change of VEGF concentration or the VEGF/bFGF ratio during HBO. All scored results varied within the range of standard values as described in the current literature.</p> <p>Conclusions</p> <p>A significant effect of HBO on serum concentrations of bFGF and VEGF was not verified in the present study. Additional application of exogenous growth factors in conjunction with HBO was not obviously linked by a coherent cause-and-effect chain as far as wound healing is concerned.</p
The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope II. Multi-object spectroscopy (MOS)
We provide an overview of the capabilities and performance of the
Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope (JWST)
when used in its multi-object spectroscopy (MOS) mode employing a novel Micro
Shutter Array (MSA) slit device. The MSA consists of four separate 98 arcsec
91 arcsec quadrants each containing individually
addressable shutters whose open areas on the sky measure 0.20 arcsec
0.46 arcsec on a 0.27 arcsec 0.53 arcsec pitch. This is the first time
that a configurable multi-object spectrograph has been available on a space
mission. The levels of multiplexing achievable with NIRSpec MOS mode are
quantified and we show that NIRSpec will be able to observe typically fifty to
two hundred objects simultaneously with the pattern of close to a quarter of a
million shutters provided by the MSA. This pattern is fixed and regular, and we
identify the specific constraints that it yields for NIRSpec observation
planning. We also present the data processing and calibration steps planned for
the NIRSpec MOS data. The significant variation in size of the mostly
diffraction-limited instrument point spread function over the large wavelength
range of 0.6-5.3 m covered by the instrument, combined with the fact that
most targets observed with the MSA cannot be expected to be perfectly centred
within their respective slits, makes the spectrophotometric and wavelength
calibration of the obtained spectra particularly complex. These challenges
notwithstanding, the sensitivity and multiplexing capabilities anticipated of
NIRSpec in MOS mode are unprecedented, and should enable significant progress
to be made in addressing a wide range of outstanding astrophysical problems
Recommended from our members
The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope II. Multi-object spectroscopy (MOS)
We provide an overview of the capabilities and performance of the
Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope (JWST)
when used in its multi-object spectroscopy (MOS) mode employing a novel Micro
Shutter Array (MSA) slit device. The MSA consists of four separate 98 arcsec
91 arcsec quadrants each containing individually
addressable shutters whose open areas on the sky measure 0.20 arcsec
0.46 arcsec on a 0.27 arcsec 0.53 arcsec pitch. This is the first time
that a configurable multi-object spectrograph has been available on a space
mission. The levels of multiplexing achievable with NIRSpec MOS mode are
quantified and we show that NIRSpec will be able to observe typically fifty to
two hundred objects simultaneously with the pattern of close to a quarter of a
million shutters provided by the MSA. This pattern is fixed and regular, and we
identify the specific constraints that it yields for NIRSpec observation
planning. We also present the data processing and calibration steps planned for
the NIRSpec MOS data. The significant variation in size of the mostly
diffraction-limited instrument point spread function over the large wavelength
range of 0.6-5.3 m covered by the instrument, combined with the fact that
most targets observed with the MSA cannot be expected to be perfectly centred
within their respective slits, makes the spectrophotometric and wavelength
calibration of the obtained spectra particularly complex. These challenges
notwithstanding, the sensitivity and multiplexing capabilities anticipated of
NIRSpec in MOS mode are unprecedented, and should enable significant progress
to be made in addressing a wide range of outstanding astrophysical problems
- …