49 research outputs found

    Investigating the interaction between personalities and the benefit of gamification

    Get PDF
    Many studies have confirmed the benefit of gamification on learners’ motivation. However, gamification may also demotivate some learners, or learners may focus on the gamification elements instead of the learning content. Some researchers have recommended building learner models that can be used to adapt gamification elements based on learners’ personalities. Building such a model requires a strong understanding of the relationship between gamification and personality. Existing empirical work has focused on measuring knowledge gain and learner preference. These findings may not be reliable because the analyses are based on learners who complete the study and because they rely on self-report from learners. This preliminary study explores a different approach by allowing learners to drop out at any time and then uses the number of students left as a proxy for motivation and engagement. Survival analysis is used to analyse the data. The results confirm the benefits of gamification and provide some pointers to how this varies with personality

    Metarhodopsin control by arrestin, light-filtering screening pigments, and visual pigment turnover in invertebrate microvillar photoreceptors

    Get PDF
    The visual pigments of most invertebrate photoreceptors have two thermostable photo-interconvertible states, the ground state rhodopsin and photo-activated metarhodopsin, which triggers the phototransduction cascade until it binds arrestin. The ratio of the two states in photoequilibrium is determined by their absorbance spectra and the effective spectral distribution of illumination. Calculations indicate that metarhodopsin levels in fly photoreceptors are maintained below ~35% in normal diurnal environments, due to the combination of a blue-green rhodopsin, an orange-absorbing metarhodopsin and red transparent screening pigments. Slow metarhodopsin degradation and rhodopsin regeneration processes further subserve visual pigment maintenance. In most insect eyes, where the majority of photoreceptors have green-absorbing rhodopsins and blue-absorbing metarhodopsins, natural illuminants are predicted to create metarhodopsin levels greater than 60% at high intensities. However, fast metarhodopsin decay and rhodopsin regeneration also play an important role in controlling metarhodopsin in green receptors, resulting in a high rhodopsin content at low light intensities and a reduced overall visual pigment content in bright light. A simple model for the visual pigment–arrestin cycle is used to illustrate the dependence of the visual pigment population states on light intensity, arrestin levels and pigment turnover

    Marco activo de recursos de innovación docente: Madrid

    Get PDF
    Una guía de espacios e instituciones para actividades educativas complementarias en enseñanza secundaria y Formación Profesional

    Mitochondrial respiratory states and rate

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to human health expands, the necessity for harmonizing the terminologyconcerning mitochondrial respiratory states and rates has become increasingly apparent. Thechemiosmotic theoryestablishes the mechanism of energy transformationandcoupling in oxidative phosphorylation. Theunifying concept of the protonmotive force providestheframeworkfordeveloping a consistent theoretical foundation ofmitochondrial physiology and bioenergetics.We followguidelines of the International Union of Pure and Applied Chemistry(IUPAC)onterminology inphysical chemistry, extended by considerationsofopen systems and thermodynamicsof irreversible processes.Theconcept-driven constructive terminology incorporates the meaning of each quantity and alignsconcepts and symbols withthe nomenclature of classicalbioenergetics. We endeavour to provide a balanced view ofmitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes.Uniform standards for evaluation of respiratory states and rates will ultimatelycontribute to reproducibility between laboratories and thussupport the development of databases of mitochondrial respiratory function in species, tissues, and cells.Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mental number line training in children with developmental dyscalculia

    Full text link
    Developmental dyscalculia (DD) is a specific learning disability that affects the acquisition of mathematical skills in children with normal intelligence and age-appropriate school education (prevalence 3-6%). One essential step in the development of mathematical understanding is the formation and automated access to a spatial representation of numbers. Many children with DD show a deficient development of such a mental number line. The present study aimed to develop a computer-based training program to improve the construction and access to the mental number line. Sixteen children with DD aged 8-10 years and 16 matched control children completed the 5-week computer training. All children played the game 15 min a day for 5 days a week. The efficiency of the training was evaluated by means of neuropsychological tests and functional magnetic resonance imaging (fMRI) during a number line task. In general, children with and without DD showed a benefit from the training indicated by (a) improved spatial representation of numbers and (b) the number of correctly solved arithmetical problems. Regarding group differences in brain activation, children with DD showed less activation in bilateral parietal regions, which reflects neuronal dysfunction in pivotal regions for number processing. Both groups showed reduced recruitment of relevant brain regions for number processing after the training which can be attributed to automatization of cognitive processes necessary for mathematical reasoning. Moreover, results point to a partial remediation of deficient brain activation in dyscalculics after consolidation of acquired and refined number representation. To conclude, the present study represents the first attempt to evaluate a custom-designed training program in a group of dyscalculic children and results indicate that the training leads to an improved spatial representation of the mental number line and a modulation of neural activation, which both facilitate processing of numerical tasks
    corecore