357 research outputs found
Monte Carlo study of the growth of ordered domains in fcc binary alloys
A Monte Carlo study of the late time growth of ordered domains on a
fcc binary alloy is presented. The energy of the alloy has been modeled
by a nearest neighbor interaction Ising hamiltonian. The system exhibits a
fourfold degenerated ground-state and two kinds of interfaces separating
ordered domains: flat and curved antiphase boundaries. Two different dynamics
are used in the simulations: the standard atom-atom exchange mechanism and the
more realistic vacancy-atom exchange mechanism. The results obtained by both
methods are compared. In particular we study the time evolution of the excess
energy, the structure factor and the mean distance between walls. In the case
of atom-atom exchange mechanism anisotropic growth has been found: two
characteristic lengths are needed in order to describe the evolution.
Contrarily, with the vacancy-atom exchange mechanism scaling with a single
length holds. Results are contrasted with existing experiments in and
theories for anisotropic growth
Materials with Giant Mechanocaloric Effects: Cooling by Strength
The search for materials with large caloric effects has become a major challenge in material science due to their potential in developing near room-temperature solid-state cooling devices, which are both efficient and clean, and that can successfully replace present refrigeration technologies. There are three main families of caloric materials: magnetocaloric, electrocaloric, and mechanocaloric. While magnetocaloric and electrocaloric materials have been studied intensively in the last few decades, mechanocaloric materials are only very recently receiving a great deal of attention. The mechanocaloric effect refers to the reversible thermal response of a solid when subjected to an external mechanical field, and encompasses both the elastocaloric effect, corresponding to a uniaxial force, and the barocaloric effect, which corresponds to the response to hydrostatic pressure. Here, the state of the art in giant mechanocaloric effects is reviewed and a critical analysis of the thermodynamic quantities that characterize the major families of barocaloric and elastocaloric materials is provided. Finally perspectives for further development in this area are given
Study of thermoelastic growth during martensitic transformations
The possibility of local elastic instabilities is considered in a first¿order structural phase transition, typically a thermoelastic martensitic transformation, with associated interfacial and volumic strain energy. They appear, for instance, as the result of shape change accommodation by simultaneous growth of different crystallographic variants. The treatment is phenomenological and deals with growth in both thermoelastic equilibrium and in nonequilibrium conditions produced by the elastic instability. Scaling of the transformed fraction curves against temperature is predicted only in the case of purely thermoelastic growth. The role of the transformation latent heat on the relaxation kinetics is also considered, and it is shown that it tends to increase the characteristic relaxation times as adiabatic conditions are approached, by keeping the system closer to a constant temperature. The analysis also reveals that the energy dissipated in the relaxation process has a double origin: release of elastic energy Wi and entropy production Si. The latter is shown to depend on both temperature rate and thermal conduction in the system
Cooling and heating by adiabatic magnetization in the NiMnIn magnetic shape memory alloy
We report on measurements of the adiabatic temperature change in the inverse
magnetocaloric NiMnIn alloy. It is shown that this alloy
heats up with the application of a magnetic field around the Curie point due to
the conventional magnetocaloric effect. In contrast, the inverse magnetocaloric
effect associated with the martensitic transition results in the unusual
decrease of temperature by adiabatic magnetization. We also provide
magnetization and specific heat data which enable to compare the measured
temperature changes to the values indirectly computed from thermodynamic
relationships. Good agreement is obtained for the conventional effect at the
second-order paramagnetic-ferromagnetic phase transition. However, at the first
order structural transition the measured values at high fields are lower than
the computed ones. Irreversible thermodynamics arguments are given to show that
such a discrepancy is due to the irreversibility of the first-order martensitic
transition.Comment: 5 pages, 4 figures. Accepted for publication in the Physical Review
- …