33 research outputs found

    Data analysis for discovering the protein profile dynamics of the human ovarian follicular fluid and BRAF mutated metastatic melanoma tissue. : -

    Get PDF
    Proteomics is widely utilized to understand the function of cellular processes at the molecular level. Using liquid chromatography interfaced with mass spectrometry (LC-MS)-based proteomics, thousands of proteins can be identified and quantified in a single experiment and their relationship and interactions can be analyzed. This makes the analysis of high-throughput proteomics data a cornerstone in the escalating field of translational medicine. Our group has been conducting deep mining LC-MS-based proteomics studies on two complex medical conditions that affect a high rate of the world population, female infertility and malignant melanoma (MM). To study female reproductive disorders, our group profiled the protein composition of the ovarian follicular fluid (FF) since it constitutes the microenvironment in which the oocyte develops during antral stages until follicular rupture at ovulation. In addition, it is believed that the FF mirrors what happens at the molecular level in the ovary and plasma due to pathological disorders. In the case of MM, we profiled the protein composition of metastatic tumor tissue from patients with BRAF mutation. The large amount of data generated from these experiments involves challenges related to data processing, analysis, and visualization of the results. The main challenge in complex disease pathology is the unraveling of the data from experimental outputs. In most cases the answer lies within that biological sample – the challenge is to analyze it and understand the meaning of the data.In this thesis, I performed data analyses to interrogate proteomics data (high resolution LC-MS expression data sets) from a bioinformatics and biostatistical point of view. Using different workflows, analyses and mathematical principles, I combined biological knowledge with bioinformatics and biostatistical approaches to integrate proteomics, clinical, and histopathological data in order to obtain new relevant biological insights from protein profiles of ovarian follicular fluids and MM tissues.The strategy applied in paper I, allowed us to describe progressive proteomic changes occurring in the FF during the ovulation process linked with oocyte maturation, hormone regulation and release of the oocyte. Here, we studied the most detailed temporal ovulatory interval, which included five time points. Paper II constituted the first large-scale proteomic characterization of FF extracted from small antral follicles (SAF) (6.1±0.4 mm) in their natural state. Using a multivariate approach, a signature of proteins appeared to play a role in oocyte maturation and oocyte meiotic resumption already from the early follicular stage. As a follow-up, paper III reported for the first time evidence of proteomic alterations occurring in the FF of SAF of polycystic ovaries (PCO). Alterations were associated with the dysfunction of follicular growth and subsequent oocyte competence usually observed in PCO syndrome. Furthermore, uncharacterized or poorly characterized proteins identified in the FF of unstimulated SAF were assessed and their functionality during folliculogenesis was described in paper IV (manuscript). In paper V, data analysis revealed for the first time that the high expression, in the MM tumor, of the B-raf V600E (mutated) protein could be a significant risk factor for poorer prognosis of patients with stages 3 or 4 of MM. A follow-up of this finding was performed on a larger cohort of patients with BRAF mutation, in which subgroups of patients with different mortality risks were identified and associated with the activation of different BRAF-related pathways, such as the immune response.Supported by data-driven results, this thesis characterized the protein profile dynamics of human ovarian FF during folliculogenesis (paper I-IV) and malignant melanoma tissue of patients with BRAF mutation (paper V). Findings from paper I to IV may open up new pathways for augmenting or attenuating subsequent oocyte viability in the pre-ovulatory follicle when it is ready to undergo ovulation, which may be of importance to future advances in reproductive medicine. On the other hand, findings from paper V may enable the eventual delineation of patient response therapy for MM with BRAF mutation

    The Hidden Story of Heterogeneous B-raf V600E Mutation Quantitative Protein Expression in Metastatic Melanoma-Association with Clinical Outcome and Tumor Phenotypes

    Get PDF
    In comparison to other human cancer types, malignant melanoma exhibits the greatest amount of heterogeneity. After DNA-based detection of the BRAF V600E mutation in melanoma patients, targeted inhibitor treatment is the current recommendation. This approach, however, does not take the abundance of the therapeutic target, i.e., the B-raf V600E protein, into consideration. As shown by immunohistochemistry, the protein expression profiles of metastatic melanomas clearly reveal the existence of inter-and intra-tumor variability. Nevertheless, the technique is only semi-quantitative. To quantitate the mutant protein there is a fundamental need for more precise techniques that are aimed at defining the currently non-existent link between the levels of the target protein and subsequent drug efficacy. Using cutting-edge mass spectrometry combined with DNA and mRNA sequencing, the mutated B-raf protein within metastatic tumors was quantitated for the first time. B-raf V600E protein analysis revealed a subjacent layer of heterogeneity for mutation-positive metastatic melanomas. These were characterized into two distinct groups with different tumor morphologies, protein profiles and patient clinical outcomes. This study provides evidence that a higher level of expression in the mutated protein is associated with a more aggressive tumor progression. Our study design, comprised of surgical isolation of tumors, histopathological characterization, tissue biobanking, and protein analysis, may enable the eventual delineation of patient responders/non-responders and subsequent therapy for malignant melanoma

    The Human Melanoma Proteome Atlas—Complementing the melanoma transcriptome

    Get PDF
    The MM500 meta‐study aims to establish a knowledge basis of the tumor proteome to serve as a complement to genome and transcriptome studies. Somatic mutations and their effect on the transcriptome have been extensively characterized in melanoma. However, the effects of these genetic changes on the proteomic landscape and the impact on cellular processes in melanoma remain poorly understood. In this study, the quantitative mass‐spectrometry‐based proteomic analysis is interfaced with pathological tumor characterization, and associated with clinical data. The melanoma proteome landscape, obtained by the analysis of 505 well‐annotated melanoma tumor samples, is defined based on almost 16 000 proteins, including mutated proteoforms of driver genes. More than 50 million MS/MS spectra were analyzed, resulting in approximately 13,6 million peptide spectrum matches (PSMs). Altogether 13 176 protein‐coding genes, represented by 366 172 peptides, in addition to 52 000 phosphorylation sites, and 4 400 acetylation sites were successfully annotated. This data covers 65% and 74% of the predicted and identified human proteome, respectively. A high degree of correlation (Pearson, up to 0.54) with the melanoma transcriptome of the TCGA repository, with an overlap of 12 751 gene products, was found. Mapping of the expressed proteins with quantitation, spatiotemporal localization, mutations, splice isoforms, and PTM variants was proven not to be predicted by genome sequencing alone. The melanoma tumor molecular map was complemented by analysis of blood protein expression, including data on proteins regulated after immunotherapy. By adding these key proteomic pillars, the MM500 study expands the knowledge on melanoma disease

    Proteomic Alterations in Follicular Fluid of Human Small Antral Follicles Collected from Polycystic Ovaries—A Pilot Study

    No full text
    Polycystic ovaries (PCO) contain antral follicles that arrest growing around 3–11 mm in diameter, perturbing the dominant follicle’s selection and the subsequent ovulatory process. Proteomic alterations of PCO follicular fluid (FF) (i.e., microenvironment in which the oocyte develops until ovulation) have been studied from large follicles in connection with oocyte pickup during ovarian stimulation. The present study aimed to detect proteomic alterations in FF from unstimulated human small antral follicles (hSAF) obtained from PCO. After performing deep-sequencing label-free proteomics on 10 PCO and 10 non-PCO FF samples from unstimulated hSAF (4.6–9.8 mm), 1436 proteins were identified, of which 115 were dysregulated in PCO FF samples. Pathways and processes related to the immune system, inflammation, and oxidative stress appeared to be upregulated in PCO, while extracellular matrix receptors interactions, the collagens-containing extracellular matrix, and the regulation of signaling were downregulated. The secreted proteins SFRP1, THBS4, and C1QC significantly decreased their expression in PCO FF, and this downregulation was suggested to affect future oocyte competence. In conclusion, our study revealed, for the first time, evidence of proteomic alterations occurring in the FF of PCO hSAF that may be related to the dysfunction of follicular growth and subsequent oocyte competence

    Quantitative Assessment of Urea In-Solution Lys-C/Trypsin Digestions Reveals Superior Performance at Room Temperature over Traditional Proteolysis at 37 °C.

    No full text
    Urea-containing buffer solutions are generally used in proteomic studies to aid protein denaturation and solubilization during cell and tissue lysis. It is well-known, however, that urea can lead to carbamylation of peptides and proteins and, subsequently, incomplete digestion of proteins. By the use of cells and tissues that had been lysed with urea, different solution digestion strategies were quantitatively assessed. In comparison with traditional proteolysis at 37 °C, urea in-solution digestion performed at room temperature improved peptide and protein identification and quantitation and had a minimum impact on miscleavage rates. Furthermore, the signal intensities and the number of carbamylated and pyroglutamic acid-modified peptides decreased. Overall, this led to a reduction in the negative effects often observed for such modifications. Data are available via ProteomeXchange with identifier PXD009426

    Mass spectrometry-based analysis of formalin-fixed, paraffin-embedded distal cholangiocarcinoma identifies stromal thrombospondin-2 as a potential prognostic marker

    No full text
    Background: Distal cholangiocarcinoma is an aggressive malignancy with a dismal prognosis. Diagnostic and prognostic biomarkers for distal cholangiocarcinoma are lacking. The aim of the present study was to identify differentially expressed proteins between distal cholangiocarcinoma and normal bile duct samples. Methods: A workflow utilizing discovery mass spectrometry and verification by parallel reaction monitoring was used to analyze surgically resected formalin-fixed, paraffin-embedded samples from distal cholangiocarcinoma patients and normal bile duct samples. Bioinformatic analysis was used for functional annotation and pathway analysis. Immunohistochemistry was performed to validate the expression of thrombospondin-2 and investigate its association with survival. Results: In the discovery study, a total of 3057 proteins were identified. Eighty-seven proteins were found to be differentially expressed (q < 0.05 and fold change ≄ 2 or ≀ 0.5); 31 proteins were upregulated and 56 were downregulated in the distal cholangiocarcinoma samples compared to controls. Bioinformatic analysis revealed an abundance of differentially expressed proteins associated with the tumor reactive stroma. Parallel reaction monitoring verified 28 proteins as upregulated and 18 as downregulated in distal cholangiocarcinoma samples compared to controls. Immunohistochemical validation revealed thrombospondin-2 to be upregulated in distal cholangiocarcinoma epithelial and stromal compartments. In paired lymph node metastases samples, thrombospondin-2 expression was significantly lower; however, stromal thrombospondin-2 expression was still frequent (72%). Stromal thrombospondin-2 was an independent predictor of poor disease-free survival (HR 3.95, 95% CI 1.09-14.3; P = 0.037). Conclusion: Several proteins without prior association with distal cholangiocarcinoma biology were identified and verified as differentially expressed between distal cholangiocarcinoma and normal bile duct samples. These proteins can be further evaluated to elucidate their biomarker potential and role in distal cholangiocarcinoma carcinogenesis. Stromal thrombospondin-2 is a potential prognostic marker in distal cholangiocarcinoma

    Alpha-1-acid glycoprotein 1 is upregulated in pancreatic ductal adenocarcinoma and confers a poor prognosis

    No full text
    Pancreatic cancer is an aggressive malignancy that carries a high mortality rate. A major contributor to the poor outcome is the lack of effective molecular markers. The purpose of this study was to develop protein markers for improved prognostication and noninvasive diagnosis. A mass spectrometry (MS)-based discovery approach was applied to pancreatic cancer tissues and healthy pancreas. In the verification phase, extracellular proteins with differential expression were further quantified in targeted mode using parallel reaction monitoring (PRM). Next, a tissue microarray (TMA) cohort including 140 pancreatic cancer resection specimens was constructed, in order to validate protein expression status and investigate potential prognostic implications. The levels of protein candidates were finally assessed in a prospective series of 110 serum samples in an accredited clinical laboratory using the automated Cobas system. Protein sequencing with nanoliquid chromatography tandem MS (nano-LC-MS/MS) and targeted PRM identified alpha-1-acid glycoprotein 1 (AGP1) as an upregulated protein in pancreatic cancer tissue. Using TMA and immunohistochemistry, AGP1 expression was significantly associated with shorter overall survival (HR = 2.22; 95% CI 1.30–3.79, P = 0.004). Multivariable analysis confirmed the results (HR = 1.87; 95% CI 1.08–3.24, P = 0.026). Circulating levels of AGP1 yielded an area under the curve (AUC) of 0.837 for the discrimination of resectable pancreatic cancer from healthy controls. Combining AGP1 with CA 19-9 enhanced the diagnostic performance, with an AUC of 0.963. This study suggests that AGP1 is a novel prognostic biomarker in pancreatic cancer tissue. Serum AGP1 levels may be useful as part of a biomarker panel for early detection of pancreatic cancer but further studies are needed

    Mass spectrometry evaluation of a neuroblastoma SH-SY5Y cell culture protocol

    No full text
    Cell line-based proteomics studies are susceptible to intrinsic biological variation that contributes to increasing false positive claims; most of the methods that follow these changes offer a limited understanding of the biological system. We applied a quantitative proteomic strategy (iTRAQ) to detect intrinsic protein variation across SH-SY5Y cell culture replicates. More than 95% of the quantified proteins presented a coefficient of variation (CV) < 20% between biological replicates and the variable proteins, which included cytoskeleton, cytoplasmic and housekeeping proteins, are widely reported in proteomic studies. We recommend this approach as an additional quality control before starting any proteomic experiment
    corecore