8 research outputs found

    Abnormal brain iron accumulation in obstructive sleep apnea: A quantitative MRI study in the HypnoLaus cohort

    Get PDF
    Obstructive sleep apnea syndrome (OSA) may be a risk factor for Alzheimer's disease. One of the hallmarks of Alzheimer's disease is disturbed iron homeostasis leading to abnormal iron deposition in brain tissue. To date, there is no empirical evidence to support the hypothesis of altered brain iron homeostasis in patients with obstructive sleep apnea as well. Data were analysed from 773 participants in the HypnoLaus study (mean age 55.9 ± 10.3 years) who underwent polysomnography and brain MRI. Cross-sectional associations were tested between OSA parameters and the MRI effective transverse relaxation rate (R2*) - indicative of iron content - in 68 grey matter regions, after adjustment for confounders. The group with severe OSA (apnea-hypopnea index ≥30/h) had higher iron levels in the left superior frontal gyrus (F3,760 = 4.79, p = 0.003), left orbital gyri (F3,760 = 5.13, p = 0.002), right and left middle temporal gyrus (F3,760 = 4.41, p = 0.004 and F3,760 = 13.08, p < 0.001, respectively), left angular gyrus (F3,760 = 6.29, p = 0.001), left supramarginal gyrus (F3,760 = 4.98, p = 0.003), and right cuneus (F3,760 = 7.09, p < 0.001). The parameters of nocturnal hypoxaemia were all consistently associated with higher iron levels. Measures of sleep fragmentation had less consistent associations with iron content. This study provides the first evidence of increased brain iron levels in obstructive sleep apnea. The observed iron changes could reflect underlying neuropathological processes that appear to be driven primarily by hypoxaemic mechanisms

    Frontal and Cerebellar Atrophy Supports FTSD-ALS Clinical Continuum

    Get PDF
    Background: Frontotemporal Spectrum Disorder (FTSD) and Amyotrophic Lateral Sclerosis (ALS) are neurodegenerative diseases often considered as a continuum from clinical, epidemiologic, and genetic perspectives. We used localized brain volume alterations to evaluate common and specific features of FTSD, FTSD-ALS, and ALS patients to further understand this clinical continuum. Methods: We used voxel-based morphometry on structural magnetic resonance images to localize volume alterations in group comparisons: patients (20 FTSD, seven FTSD-ALS, and 18 ALS) versus healthy controls (39 CTR), and patient groups between themselves. We used mean whole-brain cortical thickness (CT¯¯¯¯¯) to assess whether its correlations with local brain volume could propose mechanistic explanations of the heterogeneous clinical presentations. We also assessed whether volume reduction can explain cognitive impairment, measured with frontal assessment battery, verbal fluency, and semantic fluency. Results: Common (mainly frontal) and specific areas with reduced volume were detected between FTSD, FTSD-ALS, and ALS patients, confirming suggestions of a clinical continuum, while at the same time defining morphological specificities for each clinical group (e.g., a difference of cerebral and cerebellar involvement between FTSD and ALS). CT¯¯¯¯¯ values suggested extensive network disruption in the pathological process, with indications of a correlation between cerebral and cerebellar volumes and CT¯¯¯¯¯ in ALS. The analysis of the neuropsychological scores indeed pointed toward an important role for the cerebellum, along with fronto-temporal areas, in explaining impairment of executive, and linguistic functions. Conclusion: We identified common elements that explain the FTSD-ALS clinical continuum, while also identifying specificities of each group, partially explained by different cerebral and cerebellar involvement

    Encephalopathies Associated With Severe COVID-19 Present Neurovascular Unit Alterations Without Evidence for Strong Neuroinflammation.

    Get PDF
    Coronavirus disease (COVID-19) has been associated with a large variety of neurologic disorders. However, the mechanisms underlying these neurologic complications remain elusive. In this study, we aimed at determining whether neurologic symptoms were caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) direct infection or by either systemic or local proinflammatory mediators. In this cross-sectional study, we checked for SARS-CoV-2 RNA by quantitative reverse transcription PCR, SARS-CoV-2-specific antibodies, and 49 cytokines/chemokines/growth factors (by Luminex) in the CSF +/- sera of a cohort of 22 COVID-19 patients with neurologic presentation and 55 neurologic control patients (inflammatory neurologic disorder [IND], noninflammatory neurologic disorder, and MS). We detected anti-SARS-CoV-2 immunoglobulin G in patients with severe COVID-19 with signs of intrathecal synthesis for some of them. Of the 4 categories of tested patients, the CSF of IND exhibited the highest level of cytokines, chemokines, and growth factors. By contrast, patients with COVID-19 did not present overall upregulation of inflammatory mediators in the CSF. However, patients with severe COVID-19 (intensive care unit patients) exhibited higher concentrations of CCL2, CXCL8, and vascular endothelium growth factor A (VEGF-A) in the CSF than patients with a milder form of COVID-19. In addition, we could show that intrathecal CXCL8 synthesis was linked to an elevated albumin ratio and correlated with the increase of peripheral inflammation (serum hepatocyte growth factor [HGF] and CXCL10). Our results do not indicate active replication of SARS-CoV-2 in the CSF or signs of massive inflammation in the CSF compartment but highlight a specific impairment of the neurovascular unit linked to intrathecal production of CXCL8

    Abnormal brain iron accumulation in obstructive sleep apnea: A quantitative MRI study in the HypnoLaus cohort.

    Get PDF
    Obstructive sleep apnea syndrome (OSA) may be a risk factor for Alzheimer's disease. One of the hallmarks of Alzheimer's disease is disturbed iron homeostasis leading to abnormal iron deposition in brain tissue. To date, there is no empirical evidence to support the hypothesis of altered brain iron homeostasis in patients with obstructive sleep apnea as well. Data were analysed from 773 participants in the HypnoLaus study (mean age 55.9 ± 10.3 years) who underwent polysomnography and brain MRI. Cross-sectional associations were tested between OSA parameters and the MRI effective transverse relaxation rate (R2*) - indicative of iron content - in 68 grey matter regions, after adjustment for confounders. The group with severe OSA (apnea-hypopnea index ≥30/h) had higher iron levels in the left superior frontal gyrus (F &lt;sub&gt;3,760&lt;/sub&gt; = 4.79, p = 0.003), left orbital gyri (F &lt;sub&gt;3,760&lt;/sub&gt; = 5.13, p = 0.002), right and left middle temporal gyrus (F &lt;sub&gt;3,760&lt;/sub&gt; = 4.41, p = 0.004 and F &lt;sub&gt;3,760&lt;/sub&gt; = 13.08, p &lt; 0.001, respectively), left angular gyrus (F &lt;sub&gt;3,760&lt;/sub&gt; = 6.29, p = 0.001), left supramarginal gyrus (F &lt;sub&gt;3,760&lt;/sub&gt; = 4.98, p = 0.003), and right cuneus (F &lt;sub&gt;3,760&lt;/sub&gt; = 7.09, p &lt; 0.001). The parameters of nocturnal hypoxaemia were all consistently associated with higher iron levels. Measures of sleep fragmentation had less consistent associations with iron content. This study provides the first evidence of increased brain iron levels in obstructive sleep apnea. The observed iron changes could reflect underlying neuropathological processes that appear to be driven primarily by hypoxaemic mechanisms
    corecore