14 research outputs found

    The Cabauw Intercomparison Campaign for Nitrogen Dioxide Measuring Instruments (CINDI): Design, Execution, and Early Results

    Get PDF
    From June to July 2009 more than thirty different in-situ and remote sensing instruments from all over the world participated in the Cabauw Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI). The campaign took place at KNMI's Cabauw Experimental Site for Atmospheric Research (CESAR) in the Netherlands. Its main objectives were to determine the accuracy of state-ofthe- art ground-based measurement techniques for the detection of atmospheric nitrogen dioxide (both in-situ and remote sensing), and to investigate their usability in satellite data validation. The expected outcomes are recommendations regarding the operation and calibration of such instruments, retrieval settings, and observation strategies for the use in ground-based networks for air quality monitoring and satellite data validation. Twenty-four optical spectrometers participated in the campaign, of which twenty-one had the capability to scan different elevation angles consecutively, the so-called Multi-axis DOAS systems, thereby collecting vertical profile information, in particular for nitrogen dioxide and aerosol. Various in-situ samplers and lidar instruments simultaneously characterized the variability of atmospheric trace gases and the physical properties of aerosol particles. A large data set of continuous measurements of these atmospheric constituents has been collected under various meteorological conditions and air pollution levels. Together with the permanent measurement capability at the CESAR site characterizing the meteorological state of the atmosphere, the CINDI campaign provided a comprehensive observational data set of atmospheric constituents in a highly polluted region of the world during summertime. First detailed comparisons performed with the CINDI data show that slant column measurements of NO2, O4 and HCHO with MAX-DOAS agree within 5 to 15%, vertical profiles of NO2 derived from several independent instruments agree within 25% of one another, and MAX-DOAS aerosol optical thickness agrees within 20-30% with AERONET data. For the in-situ NO2 instrument using a molybdenum converter, a bias was found as large as 5 ppbv during day time, when compared to the other in-situ instruments using photolytic converters

    Intercomparison of NO2, O4, O3 and HCHO slant column measurements by MAX-DOAS and zenith-sky UV¿visible spectrometers during CINDI-2

    Get PDF
    40 pags., 22 figs., 13 tabs.In September 2016, 36 spectrometers from 24 institutes measured a number of key atmospheric pollutants for a period of 17¿d during the Second Cabauw Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI-2) that took place at Cabauw, the Netherlands (51.97¿¿N, 4.93¿¿E). We report on the outcome of the formal semi-blind intercomparison exercise, which was held under the umbrella of the Network for the Detection of Atmospheric Composition Change (NDACC) and the European Space Agency (ESA). The three major goals of CINDI-2 were (1) to characterise and better understand the differences between a large number of multi-axis differential optical absorption spectroscopy (MAX-DOAS) and zenith-sky DOAS instruments and analysis methods, (2) to define a robust methodology for performance assessment of all participating instruments, and (3) to contribute to a harmonisation of the measurement settings and retrieval methods. This, in turn, creates the capability to produce consistent high-quality ground-based data sets, which are an essential requirement to generate reliable long-term measurement time series suitable for trend analysis and satellite data validation. The data products investigated during the semi-blind intercomparison are slant columns of nitrogen dioxide (NO2), the oxygen collision complex (O4) and ozone (O3) measured in the UV and visible wavelength region, formaldehyde (HCHO) in the UV spectral region, and NO2 in an additional (smaller) wavelength range in the visible region. The campaign design and implementation processes are discussed in detail including the measurement protocol, calibration procedures and slant column retrieval settings. Strong emphasis was put on the careful alignment and synchronisation of the measurement systems, resulting in a unique set of measurements made under highly comparable air mass conditions. The CINDI-2 data sets were investigated using a regression analysis of the slant columns measured by each instrument and for each of the target data products. The slope and intercept of the regression analysis respectively quantify the mean systematic bias and offset of the individual data sets against the selected reference (which is obtained from the median of either all data sets or a subset), and the rms error provides an estimate of the measurement noise or dispersion. These three criteria are examined and for each of the parameters and each of the data products, performance thresholds are set and applied to all the measurements. The approach presented here has been developed based on heritage from previous intercomparison exercises. It introduces a quantitative assessment of the consistency between all the participating instruments for the MAX-DOAS and zenith-sky DOAS techniques.CINDI-2 received funding from the Netherlands Space Office (NSO). Funding for this study was provided by ESA through the CINDI-2 (ESA contract no. 4000118533/16/ISbo) and FRM4DOAS (ESA contract no. 4000118181/16/I-EF) projects and partly within the EU 7th Framework Programme QA4ECV project (grant agreement no. 607405). The BOKU MAX-DOAS instrument was funded and the participation of Stefan F. Schreier was supported by the Austrian Science Fund (FWF): I 2296-N29. The participation of the University of Toronto team was supported by the Canadian Space Agency (through the AVATARS project) and the Natural Sciences and Engineering Research Council (through the PAHA project). The instrument was primarily funded by the Canada Foundation for Innovation and is usually operated at the Polar Environment Atmospheric Research Laboratory (PEARL) by the Canadian Network for the Detection of Atmospheric Change (CANDAC). Funding for CISC was provided by the UVAS (“Ultraviolet and Visible Atmospheric Sounder”) projects SEOSAT/INGENIO, ESP2015-71299- R, MINECO-FEDER and UE. The activities of the IUP-Heidelberg were supported by the DFG project RAPSODI (grant no. PL 193/17-1). SAOZ and Mini-SAOZ instruments are supported by the Centre National de la Recherche Scientifique (CNRS) and the Centre National d’Etudes Spatiales (CNES). INTA recognises support from the National funding projects HELADO (CTM2013-41311-P) and AVATAR (CGL2014-55230-R). AMOIAP recognises support from the Russian Science Foundation (grant no. 16-17-10275) and the Russian Foundation for Basic Research (grant nos. 16-05- 01062 and 18-35-00682). Ka L. Chan received transnational access funding from ACTRIS-2 (H2020 grant agreement no. 654109). Rainer Volkamer recognises funding from NASA’s Atmospheric Composition Program (NASA-16-NUP2016-0001) and the US National Science Foundation (award AGS-1620530). Henning Finkenzeller is the recipient of a NASA graduate fellowship. Mihalis Vrekoussis recognises support from the University of Bremen and the DFG Research Center/Cluster of Excellence “The Ocean in the Earth System-MARUM”. Financial support through the University of Bremen Institutional Strategy in the framework of the DFG Excellence Initiative is gratefully appreciated for Anja Schönhardt. Pandora instrument deployment was supported by Luftblick through the ESA Pandonia Project and NASA Pandora Project at the Goddard Space Flight Center under NASA Headquarters’ Tropospheric Composition Program. The article processing charges for this open-access publication were covered by BK Scientific

    The first year of Sentinel-5p: Assessment of the quality of tropospheric ozone data

    No full text
    International audienceOzone in the troposphere damages ecosystems and triggers health problems for humans. The large spatio-temporal variations of tropospheric ozone fields pose a clear challenge to refine our understanding of the processes involved in the production and transport of ozone. The TROPOMI instrument on the Sentinel-5p platform, launched in October 2017, combines a high spatial resolution, a large swath width and the spectral measurement characteristics required to deliver tropospheric ozone data records at unprecedented detail. The first of these products was released in early 2019. It consists of 0.5° (latitude) by 1° (longitude) resolved daily maps of 3-day moving mean values of the tropospheric ozone column between 20°S and 20°N, computed using the convective-cloud method (CCD). A second product consists of maps of tropical upper tropospheric ozone mixing ratio at coarser spatio-temporal resolution. It is based on a cloud slicing algorithm (CSA) and is currently being fine-tuned for public release in the near future. A third data product, also under development at the time of this abstract, consists of vertical profiles of ozone concentration in the global troposphere and stratosphere, retrieved with a classical Optimal Estimation (OE) technique. Here we present the first assessment of the quality of the initial tropospheric ozone data products retrieved from Sentinel-5p TROPOMI measurements, carried out within the context of ESA's Sentinel-5p Mission Performance Center (MPC) and the S5PVT AO project CHEOPS-5p. We first inspect the tropospheric ozone maps for artificial features introduced by the measurement process. The CCD product is derived from binned TROPOMI total ozone column data, so sampling effects are a potential source of uncertainty. The satellite data are also confronted with quality-assured ozonesonde and lidar measurements from the NDACC, SHADOZ and TOLNET ground-based networks. These well-characterized observations are used as a reference to estimate the uncertainty of the TROPOMI data and their dependence on influence quantities. We conclude by assessing the compliance of the data products with mission and user requirements for key data applications

    First Reprocessing of Southern Hemisphere Additional Ozonesondes (SHADOZ) Ozone Profiles (1998-2016): 2. Comparisons With Satellites and Ground-Based Instruments

    Get PDF
    Abstract The Southern Hemisphere ADditional OZonesonde (SHADOZ) network was assembled to validate a new generation of ozone-monitoring satellites and to better characterize the vertical structure of tropical ozone in the troposphere and stratosphere. Beginning with nine stations in 1998, more than 7,000 ozone and P-T-U profiles are available from 14 SHADOZ sites that have operated continuously for at least a decade. We analyze ozone profiles from the recently reprocessed SHADOZ data set that is based on adjustments for inconsistencies caused by varying ozonesonde instruments and operating techniques. First, sonde-derived total ozone column amounts are compared to the overpasses from the Earth Probe/Total Ozone Mapping Spectrometer, Ozone Monitoring Instrument, and Ozone Mapping and Profiler Suite satellites that cover 1998-2016. Second, characteristics of the stratospheric and tropospheric columns are examined along with ozone structure in the tropical tropopause layer (TTL). We find that (1) relative to our earlier evaluations of SHADOZ data, in 2003, 2007, and 2012, sonde-satellite total ozone column offsets at 12 stations are 2% or less, a significant improvement; (2) as in prior studies, the 10 tropical SHADOZ stations, defined as within ±19° latitude, display statistically uniform stratospheric column ozone, 229 ± 3.9 DU (Dobson units), and a tropospheric zonal wave-one pattern with a 14 DU mean amplitude; (3) the TTL ozone column, which is also zonally uniform, masks complex vertical structure, and this argues against using satellites for lower stratospheric ozone trends; and (4) reprocessing has led to more uniform stratospheric column amounts across sites and reduced bias in stratospheric profiles. As a consequence, the uncertainty in total column ozone now averages 5%

    Ozonesonde Quality Assurance: The JOSIE-SHADOZ (2017) Experience

    Get PDF
    International audienceThe ozonesonde is a small balloon-borne instrument that is attached to a standard radiosonde to measure profiles of ozone from the surface to 35 km with ∼100-m vertical resolution. Ozonesonde data constitute a mainstay of satellite calibration and are used for climatologies and analysis of trends, especially in the lower stratosphere where satellites are most uncertain. The electrochemical concentration cell (ECC) ozonesonde has been deployed at ∼100 stations worldwide since the 1960s, with changes over time in manufacture and procedures, including details of the cell chemical solution and data processing. As a consequence, there are biases among different stations and discontinuities in profile time series from individual site records. For 22 years the Jülich (Germany) Ozonesonde Intercomparison Experiment (JOSIE) has periodically tested ozonesondes in a simulation chamber designated the World Calibration Centre for Ozonesondes (WCCOS) by WMO. During October-November 2017 a JOSIE campaign evaluated the sondes and procedures used in Southern Hemisphere Additional Ozonesondes (SHADOZ), a 14-station sonde network operating in the tropics and subtropics. A distinctive feature of the 2017 JOSIE was that the tests were conducted by operators from eight SHADOZ stations. Experimental protocols for the SHADOZ sonde configurations, which represent most of those in use today, are described, along with preliminary results. SHADOZ stations that follow WMO-recommended protocols record total ozone within 3% of the JOSIE reference instrument. These results and prior JOSIEs demonstrate that regular testing is essential to maintain best practices in ozonesonde operations and to ensure high-quality data for the satellite and ozone assessment communities

    Ground-based validation of the Copernicus Sentinel-5p TROPOMI NO<sub>2</sub> measurements with the NDACC ZSL-DOAS, MAX-DOAS and Pandonia global networks

    No full text
    International audienceThis paper reports on consolidated ground-based validation results of the atmospheric NO2 data produced operationally since April 2018 by the TROPOMI instrument on board of the ESA/EU Copernicus Sentinel-5 Precursor (S5p) satellite. Tropospheric, stratospheric, and total NO2 column data from S5p are compared to correlative measurements collected from, respectively, 19 Multi-Axis DOAS (MAX-DOAS), 26 NDACC Zenith-Scattered-Light DOAS (ZSL-DOAS), and 25 PGN/Pandora instruments distributed globally. The validation methodology gives special care to minimizing mismatch errors due to imperfect spatio-temporal co-location of the satellite and correlative data, e.g., by using tailored observation operators to account for differences in smoothing and in sampling of atmospheric structures and variability, and photochemical modelling to reduce diurnal cycle effects. Compared to the ground-based measurements, S5p data show, on an average: (i) a negative bias for the tropospheric column data, of typically −23 to −37 % in clean to slightly polluted conditions, but reaching values as high as −51 % over highly polluted areas; (ii) a slight negative bias for the stratospheric column data, of about −0.2 Pmolec/cm2, i.e. approx. −2 % in summer to −15 % in winter; and (iii) a bias ranging from zero to −50 % for the total column data, found to depend on the amplitude of the total NO2 column, with small to slightly positive bias values for columns below 6 Pmolec/cm2 and negative values above. The dispersion between S5p and correlative measurements contains mostly random components, which remain within mission requirements for the stratospheric column data (0.5 Pmolec/cm2), but exceed those for the tropospheric column data (0.7 Pmolec/cm2). While a part of the biases and dispersion may be due to representativeness differences, it is known that errors in the S5p tropospheric columns exist due to shortcomings in the (horizontally coarse) a-priori profile representation in the TM5-MP chemistry transport model used in the S5p retrieval, and to a lesser extent, to the treatment of cloud effects. Although considerable differences (up to 2 Pmolec/cm2 and more) are observed at single ground-pixel level, the near-real-time (NRTI) and off-line (OFFL) versions of the S5p NO2 operational data processor provide similar NO2 column values and validation results when globally averaged, with the NRTI values being on average 0.79 % larger than the OFFL values

    Baseline surface radiation data snapshot 2023-03-31

    No full text
    BSRN is a project of the Data and Analysis Panel from the Global Energy and Water Exchange (GEWEX) and as such is aimed at detecting important changes in the Earth's radiation field at the Earth's surface which may be related to climate changes. The data are of primary importance in supporting the validation and confirmation of satellite and computer model estimates of these quantities. At a small number of stations (currently 76 in total, 51 active, 9 declared as inactive, 16 are closed) in contrasting climatic zones, covering a latitude range from 80°N to 90°S (see station maps), solar and atmospheric radiation is measured with instruments of the highest available accuracy and with high time resolution (1 to 3 minutes). This snapshot contains the data as well as quality flags for all radiation data submitted to the BSRN archive until 2023-03-31
    corecore