261 research outputs found

    A Theoretical Model for the Extraction and Refinement of Natural Resources

    Get PDF
    The modelling of production in microeconomics has been the subject of heated debate. The controversial issues include the substitutability between production inputs, the role of time and the economic consequences of irreversibility in the production process. A case in point is the use of Cobb-Douglas type production functions. This approach completely ignores the physical process underlying the production of a good. We examine these issues in the context of the production of a basic commodity (such as copper or aluminium). We model the extraction and the refinement of a valuable substance which is mixed with waste material, in a way which is fully consistent with the physical constraints of the process. The resulting analytical description of production unambiguously reveals that perfect substitutability between production inputs fails if a corrected thermodynamic approach is used. We analyze the equilibrium pricing of a commodity extracted in an irreversible way. The thermodynamic model allows for the calculation of the ā€energy yieldā€ (energy return on energy invested) of production alongside a financial (real) return in a two-period investment decision. The two investment criteria correspond in our economy to a different choice of numeraire and means of payment and corresponding views of the value of energy resources. Under an energy numeraire, energy resources will naturally be used in a more parsimonious way

    Assessing systemic risk due to fire sales spillover through maximum entropy network reconstruction

    Full text link
    Assessing systemic risk in financial markets is of great importance but it often requires data that are unavailable or available at a very low frequency. For this reason, systemic risk assessment with partial information is potentially very useful for regulators and other stakeholders. In this paper we consider systemic risk due to fire sales spillover and portfolio rebalancing by using the risk metrics defined by Greenwood et al. (2015). By using the Maximum Entropy principle we propose a method to assess aggregated and single bank's systemicness and vulnerability and to statistically test for a change in these variables when only the information on the size of each bank and the capitalization of the investment assets are available. We prove the effectiveness of our method on 2001-2013 quarterly data of US banks for which portfolio composition is available.Comment: 36 pages, 6 figures, Accepted on Journal of Economic Dynamics and Contro

    Volatility Forecasting: The Jumps Do Matter

    Get PDF
    This study reconsiders the role of jumps for volatility forecasting by showing that jumps have a positive and mostly significant impact on future volatility. This result becomes apparent once volatility is correctly separated into its continuous and discontinuous component. To this purpose, we introduce the concept of threshold multipower variation (TMPV), which is based on the joint use of bipower variation and threshold estimation. With respect to alternative methods, our TMPV estimator provides less biased and robust estimates of the continuous quadratic variation and jumps. This technique also provides a new test for jump detection which has substantially more power than traditional tests. We use this separation to forecast volatility by employing an heterogeneous autoregressive (HAR) model which is suitable to parsimoniously model long memory in realized volatility time series. Empirical analysis shows that the proposed techniques improve significantly the accuracy of volatility forecasts for the S&P500 index, single stocks and US bond yields, especially in periods following the occurrence of a jump.volatility forecasting, jumps, bipower variation, threshold estimation, stock, bond

    Measuring Industry Relatedness and Corporate Coherence

    Get PDF
    Since the seminal work of Teece et al. (1994) firm diversification has been found to be a non-random process. The hidden deterministic nature of the diversification patterns is usually detected comparing expected (under a null hypothesys) and actual values of some statistics. Nevertheless the standard approach presents two big drawbacks, leaving unanswered several issues. First, using the observed value of a statistics provides noisy and nonhomogeneous estimates and second, the expected values are computed in a specific and privileged null hypothesis that implies spurious random effects. We show that using Monte Carlo p-scores as measure of relatedness provides cleaner and homogeneous estimates. Using the NBER database on corporate patents we investigate the effect of assuming different null hypotheses, from the less unconstrained to the fully constrained, revealing that new features in firm diversification patterns can be catched if random artifacts are ruled out.corporate coherence; relatedness; null model analysis; patent data

    Volatility forecasting: the jumps do matter

    Get PDF
    This study reconsiders the role of jumps for volatility forecasting by showing that jumps have positive and mostly significant impact on future volatility. This result becomes apparent once volatility is correctly separated into its continuous and discontinuous component. To this purpose, we introduce the concept of threshold multipower variation (TMPV), which is based on the joint use of bipower variation and threshold estimation. With respect to alternative methods, our TMPV estimator provides less biased and robust estimates of the continuous quadratic variation and jumps. This technique also provides a new test for jump detection which has substantially more power than traditional tests. We use this separation to forecast volatility by employing an heterogeneous autoregressive (HAR) model which is suitable to parsimoniously model long memory in realized volatility time series. Empirical analysis shows that the proposed techniques improve significantly the accuracy of volatility forecasts for the S&P500 index, single stocks and US bond yields, especially in periods following the occurrence of a jumpvolatility forecasting, jumps, bipower variation, threshold estimation, stock, bond

    Threshold Bipower Variation and the Impact of Jumps on Volatility Forecasting

    Get PDF
    This study reconsiders the role of jumps for volatility forecasting by showing that jumps have a positive and mostly significant impact on future volatility. This result becomes apparent once volatility is separated into its continuous and discontinuous component using estimators which are not only consistent, but also scarcely plagued by small-sample bias. To this purpose, we introduce the concept of threshold bipower variation, which is based on the joint use of bipower variation and threshold estimation. We show that its generalization (threshold multipower vari- ation) admits a feasible central limit theorem in the presence of jumps and provides less biased estimates, with respect to the standard multipower variation, of the continuous quadratic varia- tion in finite samples. We further provide a new test for jump detection which has substantially more power than tests based on multipower variation. Empirical analysis (on the S&P500 index, individual stocks and US bond yields) shows that the proposed techniques improve significantly the accuracy of volatility forecasts especially in periods following the occurrence of a jump.volatility estimation, jump detection, volatility forecasting, threshold estimation, financial markets

    Orofacial muscles activity in children with swallowing dysfunction and removable functional appliances

    Get PDF
    Swallowing dysfunction is a frequent disorder among children and refers to an altered tongue posture and abnormal tongue movement during swallowing. Removable functional appliance is one of the treatments applied by dentistry to correct this disorder. The aim of this study was to evaluate any differences on orofacial muscles activity in children with swallowing dysfunction with and without removable functional appliances. 68 children were eligible for the study and divided into the orthodontic group (OG) and the no-orthodontic group (NO-OG). Both groups performed a dental occlusion-class evaluation, a swallowing function test and a myoscan analysis in order to measure perioral forces (i.e. tongue extension force, lip pressure, masseter contraction force). Our results showed a significant difference (P=0.02) between OG and NO-OG for the tongue extension force, whereas no significant differences (P>0.05) were found for the other parameters. Our findings suggest that children with swallowing dysfunction and removable functional appliance show orofacial muscles activity within the range of reference values (except for the lip pressure). However, we hypothesize that orthodontic treatment can achieve more effective results with integration of myofunctional therapy

    Systematic staleness

    Get PDF

    Statistical inferences for price staleness

    Get PDF
    This paper proposes a nonparametric theory for statistical inferences on zero returns of high-frequency asset prices. Using an infill asymptotic design, we derive limit theorems for the percentage of zero returns observed on a finite time interval and for other related quantities. Within this framework, we develop two nonparametric tests. First, we test whether intra-day zero returns are independent and identically distributed. Second, we test whether intra-day variation of the likelihood of occurrence of zero returns can be solely explained by a deterministic diurnal pattern. In an empirical application to ten representative stocks of the NYSE, we provide evidence that the null of independent and identically distributed intra-day zero returns can be conclusively rejected. We further find that a deterministic diurnal pattern is not sufficient to explain the intra-day variability of the distribution of zero returns
    • ā€¦
    corecore