640 research outputs found

    Partial tests, universal tests and decomposability

    Get PDF
    For a property P and a sub-property P', we say that P is P'-partially testable with q queries} if there exists an algorithm that distinguishes, with high probability, inputs in P' from inputs Δ-far from P, using q queries. Some natural properties require many queries to test, but can be partitioned into a small number of subsets for which they are partially testable with very few queries, sometimes even a number independent of the input size. For properties over {0,1}, the notion of being thus partitionable ties in closely with Merlin-Arthur proofs of Proximity (MAPs) as defined independently in [14] a partition into r partially-testable properties is the same as a Merlin-Arthur system where the proof consists of the identity of one of the r partially-testable properties, giving a 2-way translation to an O(log r) size proof. Our main result is that for some low complexity properties a partition as above cannot exist, and moreover that for each of our properties there does not exist even a single sub-property featuring both a large size and a query-efficient partial test, in particular improving the lower bound set in [14]. For this we use neither the traditional Yao-type arguments nor the more recent communication complexity method, but open up a new approach for proving lower bounds. First, we use entropy analysis, which allows us to apply our arguments directly to 2-sided tests, thus avoiding the cost of the conversion in [14] from 2-sided to 1-sided tests. Broadly speaking we use "distinguishing instances" of a supposed test to show that a uniformly random choice of a member of the sub-property has "low entropy areas", ultimately leading to it having a low total entropy and hence having a small base set. Additionally, to have our arguments apply to adaptive tests, we use a mechanism of "rearranging" the input bits (through a decision tree that adaptively reads the entire input) to expose the low entropy that would otherwise not be apparent. We also explore the possibility of a connection in the other direction, namely whether the existence of a good partition (or MAP) can lead to a relatively query-efficient standard property test. We provide some preliminary results concerning this question, including a simple lower bound on the possible trade-off. Our second major result is a positive trade-off result for the restricted framework of 1-sided proximity oblivious tests. This is achieved through the construction of a "universal tester" that works the same for all properties admitting the restricted test. Our tester is very related to the notion of sample-based testing (for a non-constant number of queries) as defined by Goldreich and Ron in [13]. In particular it partially resolves an open problem raised by [13]

    Time dependence of Bragg forward scattering and self-seeding of hard x-ray free-electron lasers

    Get PDF
    Free-electron lasers (FELs) can now generate temporally short, high power x-ray pulses of unprecedented brightness, even though their longitudinal coherence is relatively poor. The longitudinal coherence can be potentially improved by employing narrow bandwidth x-ray crystal optics, in which case one must also understand how the crystal affects the field profile in time and space. We frame the dynamical theory of x-ray diffraction as a set of coupled waves in order to derive analytic expressions for the spatiotemporal response of Bragg scattering from temporally short incident pulses. We compute the profiles of both the reflected and forward scattered x-ray pulses, showing that the time delay of the wave τ\tau is linked to its transverse spatial shift Δx\Delta x through the simple relationship Δx=cτcot⁥Ξ\Delta x = c\tau \cot\theta, where Ξ\theta is the grazing angle of incidence to the diffracting planes. Finally, we apply our findings to obtain an analytic description of Bragg forward scattering relevant to monochromatically seed hard x-ray FELs.Comment: 11 pages, 6 figure

    Random Unitaries Give Quantum Expanders

    Full text link
    We show that randomly choosing the matrices in a completely positive map from the unitary group gives a quantum expander. We consider Hermitian and non-Hermitian cases, and we provide asymptotically tight bounds in the Hermitian case on the typical value of the second largest eigenvalue. The key idea is the use of Schwinger-Dyson equations from lattice gauge theory to efficiently compute averages over the unitary group.Comment: 14 pages, 1 figur

    Takagi-Taupin Description of X-ray Dynamical Diffraction from Diffractive Optics with Large Numerical Aperture

    Full text link
    We present a formalism of x-ray dynamical diffraction from volume diffractive optics with large numerical aperture and high aspect ratio, in an analogy to the Takagi-Taupin equations for strained single crystals. We derive a set of basic equations for dynamical diffraction from volume diffractive optics, which enable us to study the focusing property of these optics with various grating profiles. We study volume diffractive optics that satisfy the Bragg condition to various degrees, namely flat, tilted and wedged geometries, and derive the curved geometries required for ultimate focusing. We show that the curved geometries satisfy the Bragg condition everywhere and phase requirement for point focusing, and effectively focus hard x-rays to a scale close to the wavelength.Comment: 18 pages, 12 figure

    Survivin a radiogenetic promoter for glioblastoma viral gene therapy independently from CArG motifs

    Get PDF
    BACKGROUND: Radiogenetic therapy is a novel approach in the treatment of cancer, which employs genetic modification to alter the sensitivity of tumor cells to the effect of applied radiation. AIM: To select a potent radiation inducible promoter in the context of brain tumors and to investigate if CArG radio responsive motifs or other elements in the promoter nucleotide sequences can correlate to its response to radiation. METHODS: To select initial candidates for promoter inducible elements, the levels of mRNA expression of six different promoters were assessed using Quantitative RTPCR in D54 MG cells before and after radiation exposure. Recombinant Ad/reporter genes driven by five different promoters; CMV, VEGF, FLT-1, DR5 and survivin were constructed. Glioma cell lines were infected with different multiplicity of infection of the (promoter) Ad or CMV Ad. Cells were then exposed to a range of radiation (0–12 Gy) at single fraction. Fluorescent microscopy, Luc assay and X-gal staining was used to detect the level of expression of related genes. Different glioma cell lines and normal astrocytes were infected with Ad survivin and exposed to radiation. The promoters were analyzed for presence of CArG radio-responsive motifs and CCAAT box consensus using NCBI blast bioinformatics software. RESULTS: Radiotherapy increases the expression of gene expression by 1.25–2.5 fold in different promoters other than survivin after 2 h of radiation. RNA analysis was done and has shown an increase in copy number of tenfold for survivin. Most importantly cells treated with RT and Ad Luc driven by survivin promoter showed a fivefold increase in expression after 2 Gy of radiation in comparison to non-irradiated cells. Presence or absence of CArG motifs did not correlate with promoter response to radiation. Survivin with the best response to radiation had the lowest number of CCAAT box. CONCLUSION: Survivin is a selective potent radiation inducible promoter for glioblastoma viral gene therapy and this response to radiation could be independent of CArG motifs
    • 

    corecore