204 research outputs found
Yukawa Unification and the Superpartner Mass Scale
Naturalness in supersymmetry (SUSY) is under siege by increasingly stringent
LHC constraints, but natural electroweak symmetry breaking still remains the
most powerful motivation for superpartner masses within experimental reach. If
naturalness is the wrong criterion then what determines the mass scale of the
superpartners? We motivate supersymmetry by (1) gauge coupling unification, (2)
dark matter, and (3) precision b-tau Yukawa unification. We show that for an
LSP that is a bino-Higgsino admixture, these three requirements lead to an
upper-bound on the stop and sbottom masses in the several TeV regime because
the threshold correction to the bottom mass at the superpartner scale is
required to have a particular size. For tan beta about 50, which is needed for
t-b-tau unification, the stops must be lighter than 2.8 TeV when A_t has the
opposite sign of the gluino mass, as is favored by renormalization group
scaling. For lower values of tan beta, the top and bottom squarks must be even
lighter. Yukawa unification plus dark matter implies that superpartners are
likely in reach of the LHC, after the upgrade to 14 (or 13) TeV, independent of
any considerations of naturalness. We present a model-independent, bottom-up
analysis of the SUSY parameter space that is simultaneously consistent with
Yukawa unification and the hint for m_h = 125 GeV. We study the flavor and dark
matter phenomenology that accompanies this Yukawa unification. A large portion
of the parameter space predicts that the branching fraction for B_s to mu^+
mu^- will be observed to be significantly lower than the SM value.Comment: 34 pages plus appendices, 20 figure
Driven diffusion in a periodically compartmentalized tube: homogeneity versus intermittency of particle motion
We study the effect of a driving force F on drift and diffusion of a point Brownian particle in a tube formed by identical ylindrical compartments, which create periodic entropy barriers for the particle motion along the tube axis. The particle transport exhibits striking features: the effective mobility monotonically decreases with increasing F, and the effective diffusivity diverges as F → ∞, which indicates that the entropic effects in diffusive transport are enhanced by the driving force. Our consideration is based on two different scenarios of the particle motion at small and large F, homogeneous and intermittent, respectively. The scenarios are deduced from the careful analysis of statistics of the particle transition times between neighboring openings. From this qualitative picture, the limiting small-F and large-F behaviors of the effective mobility and diffusivity are derived analytically. Brownian dynamics simulations are used to find these quantities at intermediate values of the driving force for various compartment lengths and opening radii. This work shows that the driving force may lead to qualitatively different anomalous transport features, depending on the geometry design
Molecular remission of infant B-ALL after infusion of universal TALEN gene-edited CAR T cells
Autologous T cells engineered to express chimeric antigen receptor against the B cell antigen CD19 (CAR19) are achieving marked leukemic remissions in early-phase trials but can be difficult to manufacture, especially in infants or heavily treated patients. We generated universal CAR19 (UCART19) T cells by lentiviral transduction of non-human leukocyte antigen-matched donor cells and simultaneous transcription activator-like effector nuclease (TALEN)-mediated gene editing of T cell receptor α chain and CD52 gene loci. Two infants with relapsed refractory CD19(+) B cell acute lymphoblastic leukemia received lymphodepleting chemotherapy and anti-CD52 serotherapy, followed by a single-dose infusion of UCART19 cells. Molecular remissions were achieved within 28 days in both infants, and UCART19 cells persisted until conditioning ahead of successful allogeneic stem cell transplantation. This bridge-to-transplantation strategy demonstrates the therapeutic potential of gene-editing technology
Telephone Triage Service Data for Detection of Influenza-Like Illness
Background: Surveillance for influenza and influenza-like illness (ILI) is important for guiding public health prevention programs to mitigate the morbidity and mortality caused by influenza, including pandemic influenza. Nontraditional sources of data for influenza and ILI surveillance are of interest to public health authorities if their validity can be established. Methods/Principal Findings: National telephone triage call data were collected through automated means for purposes of syndromic surveillance. For the 17 states with at least 500,000 inhabitants eligible to use the telephone triage services, call volume for respiratory syndrome was compared to CDC weekly number of influenza isolates and percentage of visits to sentinel providers for ILI. The degree to which the call data were correlated with either CDC viral isolates or sentinel provider percentage ILI data was highly variable among states. Conclusions: Telephone triage data in the U.S. are patchy in coverage and therefore not a reliable source of ILI surveillance data on a national scale. However, in states displaying a higher correlation between the call data and the CDC data, call data may be useful as an adjunct to state-level surveillance data, for example at times when sentinel surveillance is not in operation or in areas where sentinel provider coverage is considered insufficient. Sufficient population coverage, a specific ILI syndrome definition, and the use of a threshold of percentage of calls that are for ILI would likely improve the utility of such data for ILI surveillance purposes
Enhanced CAR T cell expansion and prolonged persistence in pediatric patients with ALL treated with a low-affinity CD19 CAR
Chimeric antigen receptor (CAR)-modified T cells targeting CD19 demonstrate unparalleled responses in relapsed/refractory acute lymphoblastic leukemia (ALL)1,2,3,4,5, but toxicity, including cytokine-release syndrome (CRS) and neurotoxicity, limits broader application. Moreover, 40–60% of patients relapse owing to poor CAR T cell persistence or emergence of CD19− clones. Some factors, including the choice of single-chain spacer6 and extracellular7 and costimulatory domains8, have a profound effect on CAR T cell function and persistence. However, little is known about the impact of CAR binding affinity. There is evidence of a ceiling above which increased immunoreceptor affinity may adversely affect T cell responses9,10,11. We generated a novel CD19 CAR (CAT) with a lower affinity than FMC63, the high-affinity binder used in many clinical studies1,2,3,4. CAT CAR T cells showed increased proliferation and cytotoxicity in vitro and had enhanced proliferative and in vivo antitumor activity compared with FMC63 CAR T cells. In a clinical study (CARPALL, NCT02443831), 12/14 patients with relapsed/refractory pediatric B cell acute lymphoblastic leukemia treated with CAT CAR T cells achieved molecular remission. Persistence was demonstrated in 11 of 14 patients at last follow-up, with enhanced CAR T cell expansion compared with published data. Toxicity was low, with no severe CRS. One-year overall and event-free survival were 63% and 46%, respectivel
Design and Synthesis of Heterocyclic Cations for Specific DNA Recognition: From AT-Rich to Mixed-Base-Pair DNA Sequences
The compounds synthesized in this research were designed with the goal of establishing a new paradigm for mixed-base-pair DNA sequence-specific recognition. The design scheme starts with a cell-permeable heterocyclic cation that binds to AT base pair sites in the DNA minor groove. Modifications were introduced in the original compound to include an Hbond accepting group to specifically recognize the G-NH that projects into the minor groove. Therefore, a series of heterocyclic cations substituted with an azabenzimidazole ring has been designed and synthesized for mixed-base-pair DNA recognition. The most successful compound, 12a, had an azabenzimidazole to recognize G and additional modifications for general minor groove interactions. It binds to the DNA site −AAAGTTT− more strongly than the −AAATTT− site without GC and indicates the design success. Structural modifications of 12a generally weakened binding. The interactions of the new compound with a variety of DNA sequences with and without GC base pairs were evaluated by thermal melting analysis, circular dichroism, fluorescence emission spectroscopy, surface plasmon resonance, and molecular modeling
ROCK1 and LIMK2 Interact in Spread but Not Blebbing Cancer Cells
Cancer cells migrating within a 3D microenvironment are able to adopt either a mesenchymal or amoeboid mode of migration. Amoeboid migration is characterised by membrane blebbing that is dependent on the Rho effectors, ROCK1/2. We identify LIMK2 as the preferred substrate for ROCK1 but find that LIMK2 did not induce membrane blebbing, suggesting that a LIMK2 pathway is not involved in amoeboid-mode migration. In support of this hypothesis, novel FRET data demonstrate a direct interaction between ROCK1 and LIMK2 in polarised but not blebbing cells. Our results point to a specific role for the ROCK1:LIMK2 pathway in mesenchymal-mode migration
Serogroup W-135 Meningococcal Disease during the Hajj, 2000
An outbreak of serogroup W-135 meningococcal disease occurred during the 2000 Hajj in Saudi Arabia. Disease was reported worldwide in Hajj pilgrims and their close contacts; however, most cases were identified in Saudi Arabia. Trends in Saudi meningococcal disease were evaluated and the epidemiology of Saudi cases from this outbreak described. Saudi national meningococcal disease incidence data for 1990 to 2000 were reviewed; cases from January 24 to June 5, 2000 were retrospectively reviewed. The 2000 Hajj outbreak consisted of distinct serogroup A and serogroup W-135 outbreaks. Of 253 identified cases in Saudi Arabia, 161 (64%) had serogroup identification; serogroups W-135 and A caused 93 (37%) and 60 (24%) cases with attack rates of 9 and 6 cases per 100,000 population, respectively. The 2000 Hajj outbreak was the first large serogroup W-135 meningococcal disease outbreak identified worldwide. Enhanced surveillance for serogroup W-135, especially in Africa, is essential to control this emerging epidemic disease
- …