17 research outputs found
Robustness Study of a Tensile Modulus Prediction Model for Semicrystalline Polymers
This work presents a robustness study of a previously developed empirical model that links Young's modulus to two key parameters of crystalline structure; crystallinity and lamellae thickness. The reliability of this modulus prediction model was tested by using different calorimeters and different polypropylene grades as well. Small samples were fabricated from injection-molded bars from different locations of the specimens in order to check the effect of structural inhomogeneity originated by the dynamic processing conditions. In addition, the standard deviation and consequently the accuracy of the prediction was tested by repeated calorimetric measurements. The crystalline structure and melting characteristics were measured by differential scanning calorimetry (DSC). The tensile properties of studied specimens were evaluated by standardized tensile tests. Although, the accuracy and reliability of the prediction model is dependent on the instrument used for thermal analysis, reasonably good agreement was found between the predicted and measured values in most cases. However, we may note that only well-calibrated calorimeters are suitable for reliable prediction of the modulus
Adaptation of Life form Categorisation of Ellenberg and Mueller-Dombois to the Hungarian Flora
The categorisation of plant species according to their life form has a long history in plant ecology. The most popular system worldwide and also in Hungary is Raunkiaer’s categorisation according to the position of buds (meristems) surviving the adverse season. The original system contains only seven categories, resulting in high diversity within each category. Therefore, different refinements are suggested. This paper aims to apply an internationally accepted refinement of Raunkiaer’s categorisation, the Ellenberg and Mueller-Dombois system, to the Hungarian flora
Formulation of Chlorine-Dioxide-Releasing Nanofibers for Disinfection in Humid and CO2-Rich Environment
Background: Preventing infectious diseases has become particularly relevant in the past few years. Therefore, antiseptics that are harmless and insusceptible to microbial resistance mechanisms are desired in medicine and public health. In our recent work, a poly(ethylene oxide)-based nanofibrous mat loaded with sodium chlorite was formulated. Methods: We tested the chlorine dioxide production and bacterial inactivation of the fibers in a medium, modeling the parameters of human exhaled air (ca. 5% (v/v) CO(2), T = 37 °C, RH > 95%). The morphology and microstructure of the fibers were investigated via scanning electron microscopy and infrared spectroscopy. Results: Smooth-surfaced, nanoscale fibers were produced. The ClO(2)-producing ability of the fibers decreased from 65.8 ppm/mg to 4.8 ppm/mg with the increase of the sample weight from 1 to 30 mg. The effect of CO(2) concentration and exposure time was also evaluated. The antibacterial activity of the fibers was tested in a 24 h experiment. The sodium-chlorite-loaded fibers showed substantial antibacterial activity. Conclusions: Chlorine dioxide was liberated into the gas phase in the presence of CO(2) and water vapor, eliminating the bacteria. Sodium-chlorite-loaded nanofibers can be sources of prolonged chlorine dioxide production and subsequent pathogen inactivation in a CO(2)-rich and humid environment. Based on the results, further evaluation of the possible application of the formulation in face-mask filters as medical devices is encouraged
Coupled Hydro-Climatic Signals in the Radial Growth of Oaks Benefitting from Groundwater Availability
Lowland forests benefiting from groundwater availability are important ecosystems in Central Europe, both from ecological and economic perspectives. Besides a great reduction in their extent in the historical times and further shifts in the land use and water management regimes intensified during the industrial era, continuing changes in the groundwater and overall hydro-climatic conditions can pose significant challenges to them. Although tree-ring analyses serve as widely used tools to assess the climatic impact on tree growth and vitality, few studies have attempted to investigate the effects of subsurface hydrology on interannual fluctuations in xylem production. In this study, we compared the tree-ring width series of pedunculate oak (Quercus robur L.) from a forested area in southwestern Hungary with the time series of monthly groundwater depth and climatic variables over the period of 1920–2017 with a specific focus on 1961–2017. The radial growth of the studied trees showed the strongest relationship with late winter and early spring groundwater and drought conditions preceding the growing season, differing from the commonly reported climatic signals marked by early summer meteorological conditions of the vegetation season. The results suggest that the groundwater recharge during the dormant period preceding the vegetation season and the groundwater levels in early spring were among the key limiting factors on tree growth in the study area. In the growing years starting with a sufficiently high groundwater table, even scarce summer precipitation did not seem to limit radial growth drastically. However, unfavorable shifts in climatic conditions during the past few decades and the associated uncertainties in the future groundwater regime imply that additional active measures aimed at maintaining and restoring groundwater conditions may well be highly beneficial for sustaining groundwater-dependent forest ecosystems and their productivity
Properties of the Liquid-Vapor Interface of Acetone-Water Mixtures. A Computer Simulation and ITIM Analysis Study
Molecular dynamics simulations of the liquid-vapor interface of acetone-water mixtures of different compositions, covering the entire composition range have been performed on the canonical (N, V, T) ensemble at 298 K, using a model combination that excellently describes the mixing properties of these compounds. The properties of the intrinsic liquid surfaces have been analyzed in terms of the Identification of the Truly Interfacial Molecules (ITIM) method. Thus, the composition, width, roughness, and separation of the subsurface molecular layers, as well as self-association, orientation, and dynamics of exchange with the bulk phase of the surface molecules have been analyzed in detail. Our results show that acetone molecules are strongly adsorbed at the liquid surface, and this adsorption extends to several molecular layers. Like molecules in the surface layer are found to form relatively large lateral self-associates. The effect of the vicinity of the vapor phase on a number of properties of the liquid phase vanishes beyond the first molecular layer, with the second subsurface layer already part of the bulk liquid phase in these respects. The orientational preferences of the surface molecules are governed primarily by the dipole-dipole interaction of the neighboring acetone molecules, and hydrogen bonding interaction of the neighboring acetone-water pairs. (Figure Presented). © 2015 American Chemical Society
Mapping a Syntenic Modifier on Mouse Chromosome 1 Influencing the Expressivity of the Compact Phenotype in the Myostatin Mutant (Mstn(Cmpt-dl1Abc)) Compact Mouse
A novel method for mapping a modifier gene that is syntenic to its major gene was used to map a male-sex-limited modifier of the expressivity of the Compact phenotype in the myostatin mutant (Mstn(Cmpt-dl1Abc)) Compact mouse. The modifier was mapped to the general region of D1Mit262, 40 cM distal to Mstn on chromosome 1. Myogenin, a postulated downstream target of myostatin, maps to the same region
Incidence of the Brownian Relaxation Process on the Magnetic Properties of Ferrofluids
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).Ferrofluids containing magnetic nanoparticles represent a special class of magnetic materials due to the added freedom of particle tumbling in the fluids. We studied this process, known as Brownian relaxation, and its effect on the magnetic properties of ferrofluids with controlled magnetite nanoparticle sizes. For small nanoparticles (below 10 nm diameter), the Néel process is expected to dominate the magnetic response, whereas for larger particles, Brownian relaxation becomes important. Temperature- and magnetic-field-dependent magnetization studies, differential scanning calorimetry, and AC susceptibility measurements were carried out for 6 and 13.5 nm diameter magnetite nanoparticles suspended in water. We identify clear fingerprints of Brownian relaxation for the sample of large-diameter nanoparticles as both magnetic and thermal hysteresis develop at the water freezing temperature, whereas the samples of small-diameter nanoparticles remain hysteresis-free down to the magnetic blocking temperature. This is supported by the temperature-dependent AC susceptibility measurements: above 273 K, the data show a low-frequency Debye peak, which is characteristic of Brownian relaxation. This peak vanishes below 273 K.This work was supported by the Hungarian National Research, Development and Innovation Office (NKFIH), grants 2022-2.1.1-NL-2022-00004, K137852, FK138501, and TKP 2021-NVA-04, the V4-Japan Joint Research Program (BGapEng, 2019-2.1.7-ERA-NET-2021-00028), and TED2021-129254B-C21 of the Spanish MCIN.Peer reviewe