16 research outputs found
Current rectification in a single molecule diode: the role of electrode coupling
We demonstrate large rectification ratios (> 100) in single-molecule
junctions based on a metal-oxide cluster (polyoxometalate), using a scanning
tunneling microscope (STM) both at ambient conditions and at low temperature.
These rectification ratios are the largest ever observed in a single-molecule
junction, and in addition these junctions sustain current densities larger than
10^5 A/cm^2. By following the variation of the I-V characteristics with
tip-molecule separation we demonstrate unambiguously that rectification is due
to asymmetric coupling to the electrodes of a molecule with an asymmetric level
structure. This mechanism can be implemented in other type of molecular
junctions using both organic and inorganic molecules and provides a simple
strategy for the rational design of molecular diodes
Green and Sustainable Manufacture of Ultrapure Engineered Nanomaterials
© 2020 by the authors.Nanomaterials with very specific features (purity, colloidal stability, composition, size, shape, location…) are commonly requested by cutting-edge technologic applications, and hence a sustainable process for the mass-production of tunable/engineered nanomaterials would be desirable. Despite this, tuning nano-scale features when scaling-up the production of nanoparticles/nanomaterials has been considered the main technological barrier for the development of nanotechnology. Aimed at overcoming these challenging frontier, a new gas-phase reactor design providing a shorter residence time, and thus a faster quenching of nanoclusters growth, is proposed for the green, sustainable, versatile, cost-effective, and scalable manufacture of ultrapure engineered nanomaterials (ranging from nanoclusters and nanoalloys to engineered nanostructures) with a tunable degree of agglomeration, composition, size, shape, and location. This method enables: (1) more homogeneous, non-agglomerated ultrapure Au-Ag nanoalloys under 10 nm; (2) 3-nm non-agglomerated ultrapure Au nanoclusters with lower gas flow rates; (3) shape-controlled Ag NPs; and (4) stable Au and Ag engineered nanostructures: nanodisks, nanocrosses, and 3D nanopillars. In conclusion, this new approach paves the way for the green and sustainable mass-production of ultrapure engineered nanomaterials.This research was funded by the European Union’s Seventh Framework Programme (EU FP7) under grant agreement number 280765 (BUONAPART-e), the PROMETEO Program (Ref.2019/123) - Generalitat Valenciana, FEDER/Ministerio de Ciencia e Innovación– Agencia Estatal de Investigación/Ref.ICTS-2017-28-UPV-9 and co-funded by European Union’s operative program FEDER/Comunitat Valenciana 2014-2020. C.G.-M. acknowledges support from Agencia Estatal de Investigación AEI/FEDER (EU) under Grant Agreement TEC2015-73581-JIN PHUTURE. E.P.-C. acknowledges support from the Spanish Ministry of Economy and Competiveness (MINECO) under Grant Agreement FJCI-2015-27228 and TEC2017-92037-EXPPeer reviewe
Green and Sustainable Manufacture of Ultrapure Engineered Nanomaterials
Nanomaterials with very specific features (purity, colloidal stability, composition, size, shape, location…) are commonly requested by cutting-edge technologic applications, and hence a sustainable process for the mass-production of tunable/engineered nanomaterials would be desirable. Despite this, tuning nano-scale features when scaling-up the production of nanoparticles/nanomaterials has been considered the main technological barrier for the development of nanotechnology. Aimed at overcoming these challenging frontier, a new gas-phase reactor design providing a shorter residence time, and thus a faster quenching of nanoclusters growth, is proposed for the green, sustainable, versatile, cost-effective, and scalable manufacture of ultrapure engineered nanomaterials (ranging from nanoclusters and nanoalloys to engineered nanostructures) with a tunable degree of agglomeration, composition, size, shape, and location. This method enables: (1) more homogeneous, non-agglomerated ultrapure Au-Ag nanoalloys under 10 nm; (2) 3-nm non-agglomerated ultrapure Au nanoclusters with lower gas flow rates; (3) shape-controlled Ag NPs; and (4) stable Au and Ag engineered nanostructures: nanodisks, nanocrosses, and 3D nanopillars. In conclusion, this new approach paves the way for the green and sustainable mass-production of ultrapure engineered nanomaterials.</jats:p
