19 research outputs found

    Data-driven MHD simulation of a sunspot rotating active region leading to solar eruption

    Full text link
    Solar eruptions are the leading driver of space weather, and it is vital for space weather forecast to understand in what conditions the solar eruptions can be produced and how they are initiated. The rotation of sunspots around their umbral center has long been considered as an important condition in causing solar eruptions. To unveil the underlying mechanisms, here we carried out a data-driven magnetohydrodynamics simulation for the event of a large sunspot with rotation for days in solar active region NOAA 12158 leading to a major eruption. The photospheric velocity as recovered from the time sequence of vector magnetograms are inputted directly at the bottom boundary of the numerical model as the driving flow. Our simulation successfully follows the long-term quasi-static evolution of the active region until the fast eruption, with magnetic field structure consistent with the observed coronal emission and onset time of simulated eruption matches rather well with the observations. Analysis of the process suggests that through the successive rotation of the sunspot the coronal magnetic field is sheared with a vertical current sheet created progressively, and once fast reconnection sets in at the current sheet, the eruption is instantly triggered, with a highly twisted flux rope originating from the eruption. This data-driven simulation stresses magnetic reconnection as the key mechanism in sunspot rotation leading to eruption.Comment: Accept by A&

    A Fundamental Mechanism of Solar Eruption Initiation in a Multipolar Magnetic Field

    No full text
    Recently, we established a fundamental mechanism of solar eruption initiation in which an eruption can be initiated from a bipolar field through magnetic reconnection in the current sheet (CS) that is formed slowly in the core field as driven by photospheric shearing motion. Here, using a series of fully 3D MHD simulations with a range of different photospheric magnetic flux distributions, we extended this fundamental mechanism to the quadrupolar magnetic field containing a null point above the core field, which is the basic configuration of the classical breakout model. As is commonly believed, in such a multipolar configuration, the reconnection triggered in the CS originated at the null point (namely, the breakout reconnection) plays the key role in eruption initiation by establishing a positive feedback loop between the breakout reconnection and the expansion of the core field. However, our simulation showed that the key to eruption initiation in such a multipolar configuration remains the slow formation of the CS in the sheared core, rather than the onset of fast breakout reconnection. The breakout reconnection only helps the formation of the core CS by letting the core field expand faster, but the eruption cannot occur when the bottom surface driving is stopped well before the core CS is formed, even though the fast reconnection has already been triggered in the breakout CS. This study clarified the role of breakout reconnection and confirmed formation of the core CS as the key to the eruption initiation in a multipolar magnetic field

    Analytical solutions for time-dependent kinematic three-dimensional magnetic reconnection.

    No full text
    Magnetic reconnection is a process that can rapidly convert magnetic field energy into plasma thermal energy and kinetic energy, and it is also an important energy conversion mechanism in space physics, astrophysics and plasma physics. Research related to analytical solutions for time-dependent three-dimensional magnetic reconnection is extremely difficult. For decades, several mathematical descriptions have been developed regarding different reconnection mechanisms, in which the equations based on magnetohydrodynamics theory outside the reconnection diffusion region are widely accepted. However, the equation set cannot be analytically solved unless specified constraints are imposed or the equations are reduced. Based on previous analytical methods for kinematic stationary reconnection, here the analytical solutions for time-dependent kinematic three-dimensional magnetic reconnection are discussed. In contrast to the counter-rotating plasma flows that existed in steady-state reconnection, it is found that spiral plasma flows, which have never been reported before, can be generated if the magnetic field changes exponentially with time. These analyses reveal new scenarios for time-dependent kinematic three-dimensional magnetic reconnection, and the deduced analytical solutions could improve our understanding of the dynamics involved in reconnection processes, as well as the interactions between the magnetic field and plasma flows during magnetic reconnection
    corecore