333 research outputs found

    The Holbrook Meteorite - 99 Years Out in the Weather

    Get PDF
    At 7:15pm on the evening of 19th July 1912, a bright fireball appeared in the sky above Navajo County, Arizona [1]. After several loud detonations, approximately 16,000 mostly pea-sized stones fell near the Arntz siding of the Santa Fe Railroad, 7 miles from the town of Holbrook. A search orchestrated by W.M.Foote resulted in nearly 220 kg of material being recovered; samples were exchanged with a great many of the World's Museums [2]. In 1931 Harvey Nininger revisited the site and was able to find another 23 kg that had originally been missed [3]. One of us (EKG) returned again in 1968 and found a further ca 1.5 kg specimen [4]. Meteorite hunters have been going back to Holbrook ever since in the hope of more finds. For example in 2001 a group of 45 searchers accumulated 440 g of previously overlooked L6 group meteorite fragments. In 2011, the 99th anniversary of the event, Rubin Garcia located 11 mini-meteorites [5]

    The exposure history of the Apollo 16 site: An assessment based on methane and hydrolysable carbon

    Get PDF
    Nineteen soils from eight stations at the Apollo 16 landing site have been analyzed for methane and hydrolysable carbon. These results, in conjunction with published data from photogeology, bulk chemistry, rare gases, primordial and cosmogenic radionuclides, and agglutinate abundances have been interpreted in terms of differing contributions from three components-North and South Ray Crater ejecta and Cayley Plains material

    Identification of the Beagle 2 lander on Mars

    Get PDF
    The 2003 Beagle 2 Mars lander has been identified in Isidis Planitia at 90.43° E, 11.53° N, close to the predicted target of 90.50° E, 11.53° N. Beagle 2 was an exobiology lander designed to look for isotopic and compositional signs of life on Mars, as part of the European Space Agency Mars Express (MEX) mission. The 2004 recalculation of the original landing ellipse from a 3-sigma major axis from 174 km to 57 km, and the acquisition of Mars Reconnaissance Orbiter High Resolution Imaging Science Experiment (HiRISE) imagery at 30 cm per pixel across the target region, led to the initial identification of the lander in 2014. Following this, more HiRISE images, giving a total of 15, including red and blue-green colours, were obtained over the area of interest and searched, which allowed sub-pixel imaging using super high-resolution techniques. The size (approx. 1.5 m), distinctive multilobed shape, high reflectivity relative to the local terrain, specular reflections, and location close to the centre of the planned landing ellipse led to the identification of the Beagle 2 lander. The shape of the imaged lander, although to some extent masked by the specular reflections in the various images, is consistent with deployment of the lander lid and then some or all solar panels. Failure to fully deploy the panels-which may have been caused by damage during landing-would have prohibited communication between the lander and MEX and commencement of science operations. This implies that the main part of the entry, descent and landing sequence, the ejection from MEX, atmospheric entry and parachute deployment, and landing worked as planned with perhaps only the final full panel deployment failing
    • …
    corecore