265 research outputs found

    Regular endurance training reduces the exercise induced HIF-1α and HIF-2α mRNA expression in human skeletal muscle in normoxic conditions

    Get PDF
    Regular exercise induces a variety of adaptive responses that enhance the oxidative and metabolic capacity of human skeletal muscle. Although the physiological adjustments of regular exercise have been known for decades, the underlying mechanisms are still unclear. The hypoxia inducible factors 1 and 2 (HIFs) are clearly related heterodimeric transcription factors that consist of an oxygen-depended α-subunit and a constitutive ÎČ-subunit. With hypoxic exposure, HIF-1α and HIF-2α protein are stabilized. Upon heterodimerization, HIFs induce the transcription of a variety of genes including erythropoietin (EPO), transferrin and its receptor, as well as vascular endothelial growth factor (VEGF) and its receptor. Considering that several of these genes are also induced with exercise, we tested the hypothesis that the mRNA level of HIF-1α and HIF-2α subunits increases with a single exercise bout, and that this response is blunted with training. We obtained muscle biopsies from a trained (5days/week during 4weeks) and untrained leg from the same human subject before, immediately after, and during the recovery from a 3h two-legged knee extensor exercise bout, where the two legs exercised at the same absolute workload. In the untrained leg, the exercise bout induced an increase (P<0.05) in HIF-1α fold and HIF-2α fold mRNA at 6h of recovery. In contrast, HIF-1α and HIF-2α mRNA levels were not altered at any time point in the trained leg. Obviously, HIF-1α and HIF-2α mRNA levels are transiently increased in untrained human skeletal muscle in response to an acute exercise bout, but this response is blunted after exercise training. We propose that HIFs expression is upregulated with exercise and that it may be an important transcription factor that regulates adaptive gene responses to exercis

    Combined speed endurance and endurance exercise amplify the exercise-induced PGC-1α and PDK4 mRNA response in trained human muscle

    Get PDF
    The aim of this study was to investigate the mRNA response related to mitochondrial biogenesis, metabolism, angiogenesis, and myogenesis in trained human skeletal muscle to speed endurance exercise (S), endurance exercise (E), and speed endurance followed by endurance exercise (S + E). Seventeen trained male subjects (maximum oxygen uptake (VO(2)‐max): 57.2 ± 3.7 (mean ± SD) mL·min(−1)·kg(−1)) performed S (6 × 30 sec all‐out), E (60 min ~60% VO(2)‐max), and S + E on a cycle ergometer on separate occasions. Muscle biopsies were obtained at rest and 1, 2, and 3 h after the speed endurance exercise (S and S + E) and at rest, 0, 1, and 2 h after exercise in E. In S and S + E, muscle peroxisome proliferator‐activated receptor‐γ coactivator‐1 (PGC‐1α) and pyruvate dehydrogenase kinase‐4 (PDK4) mRNA were higher (P < 0.05) 2 and 3 h after speed endurance exercise than at rest. Muscle PGC‐1α and PDK4 mRNA levels were higher (P < 0.05) after exercise in S + E than in S and E, and higher (P < 0.05) in S than in E after exercise. In S and S + E, muscle vascular endothelial growth factor mRNA was higher (P < 0.05) 1 (S only), 2 and 3 h after speed endurance exercise than at rest. In S + E, muscle regulatory factor‐4 and muscle heme oxygenase‐1 mRNA were higher (P < 0.05) 1, 2, and 3 h after speed endurance exercise than at rest. In S, muscle hexokinase II mRNA was higher (P < 0.05) 2 and 3 h after speed endurance exercise than at rest and higher (P < 0.05) than in E after exercise. These findings suggest that in trained subjects, speed endurance exercise provides a stimulus for muscle mitochondrial biogenesis, substrate regulation, and angiogenesis that is not evident with endurance exercise. These responses are reinforced when speed endurance exercise is followed by endurance exercise

    PGC-1α promotes exercise-induced autophagy in mouse skeletal muscle

    Get PDF
    Recent evidence suggests that exercise stimulates the degradation of cellular components in skeletal muscle through activation of autophagy, but the time course of the autophagy response during recovery from exercise has not been determined. Furthermore, the regulatory mechanisms behind exercise‐induced autophagy remain unclear, although the muscle oxidative phenotype has been linked with basal autophagy levels. Therefore, the aim of this study was to investigate the role of the key regulator of muscle oxidative capacity, PGC‐1α, in exercise‐induced autophagy at several time points during recovery. Mice with transgenic muscle‐specific overexpression (TG) or knockout (MKO) of PGC‐1α and their respective littermate controls were subjected to a single 1 h bout of treadmill running and euthanized immediately (0 h), 2, 6, and 10 h after exercise. In the PGC‐1α MKO strain, quadriceps protein content of the autophagy marker LC3II was increased from 2 h into recovery in lox/lox control, but not in MKO mice. In the PGC‐1α TG strain, quadriceps protein content of LC3II was increased from 2 h after exercise in TG, but not in WT. Although AMPK and ACC phosphorylation was increased immediately following exercise, the observed exercise‐induced autophagy response was not associated with phosphorylation of the AMPK‐target ULK1. However, lower protein carbonyl content was observed in lox/lox and TG mice after exercise coinciding with the increased LC3 lipidation. In conclusion, the present results suggest a role of skeletal muscle PGC‐1α in coordinating several exercise‐induced adaptive responses including autophagic removal of damaged cellular components

    Effects of IL-6 on pyruvate dehydrogenase regulation in mouse skeletal muscle

    Get PDF
    Skeletal muscle regulates substrate choice according to demand and availability and pyruvate dehydrogenase (PDH) is central in this regulation. Circulating interleukin (IL)-6 increases during exercise and IL-6 has been suggested to increase whole body fat oxidation. Furthermore, IL-6 has been reported to increase AMP-activated protein kinase (AMPK) phosphorylation and AMPK suggested to regulate PDHa activity. Together, this suggests that IL-6 may be involved in regulating PDH. The aim of this study was to investigate the effect of a single injection of IL-6 on PDH regulation in skeletal muscle in fed and fasted mice. Fed and 16–18 h fasted mice were injected with either 3 ng · g(−1) recombinant mouse IL-6 or PBS as control. Fasting markedly reduced plasma glucose, muscle glycogen, muscle PDHa activity, as well as increased PDK4 mRNA and protein content in skeletal muscle. IL-6 injection did not affect plasma glucose or muscle glycogen, but increased AMPK and ACC phosphorylation and tended to decrease p38 protein content in skeletal muscle in fasted mice. In addition IL-6 injection reduced PDHa activity in fed mice and increased PDHa activity in fasted mice without significant changes in PDH-E1α phosphorylation or PDP1 and PDK4 mRNA and protein content. The present findings suggest that IL-6 contributes to regulating the PDHa activity and hence carbohydrate oxidation, but the metabolic state of the muscle seems to determine the outcome of this regulation. In addition, AMPK and p38 may contribute to the IL-6-mediated PDH regulation in the fasted state

    Skeletal muscle IL-6 regulates muscle substrate utilization and adipose tissue metabolism during recovery from an acute bout of exercise

    Get PDF
    An acute bout of exercise imposes a major challenge on whole-body metabolism and metabolic adjustments are needed in multiple tissues during recovery to reestablish metabolic homeostasis. It is currently unresolved how this regulation is orchestrated between tissues. This study was undertaken to clarify the role of skeletal muscle derived interleukin 6 (IL-6) in the coordination of the metabolic responses during recovery from acute exercise. Skeletal muscle specific IL-6 knockout (IL-6 MKO) and littermate Control mice were rested or ran on a treadmill for 2h. Plasma, skeletal muscle, liver and adipose tissue were obtained after 6 and 10h of recovery. Non-exercised IL-6 MKO mice had higher plasma lactate and lower plasma non-esterified fatty acids than Controls. The activity of pyruvate dehydrogenase in the active form was, in skeletal muscle, higher in IL-6 MKO mice than Controls in non-exercised mice and 6h after exercise. IL-6 MKO mice had lower glucose transporter 4 protein content in inguinal adipose tissue (WAT) than Control in non-exercised mice and 10h after treadmill running. Epididymal WAT hormone sensitive lipase phosphorylation and inguinal WAT mitogen activated kinase P38 phosphorylation were higher in IL-6 MKO than Control mice 6h after exercise. These findings indicate that skeletal muscle IL-6 may play an important role in the regulation of substrate utilization in skeletal muscle, basal and exercise-induced adaptations in adipose tissue glucose uptake and lipolysis during recovery from exercise. Together this indicates that skeletal muscle IL-6 contributes to reestablishing metabolic homeostasis during recovery from exercise by regulating WAT and skeletal muscle metabolism
    • 

    corecore