7 research outputs found

    Conditionally Adaptive Multi-Task Learning: Improving Transfer Learning in NLP Using Fewer Parameters & Less Data

    Full text link
    Multi-Task Learning (MTL) networks have emerged as a promising method for transferring learned knowledge across different tasks. However, MTL must deal with challenges such as: overfitting to low resource tasks, catastrophic forgetting, and negative task transfer, or learning interference. Often, in Natural Language Processing (NLP), a separate model per task is needed to obtain the best performance. However, many fine-tuning approaches are both parameter inefficient, i.e., potentially involving one new model per task, and highly susceptible to losing knowledge acquired during pretraining. We propose a novel Transformer architecture consisting of a new conditional attention mechanism as well as a set of task-conditioned modules that facilitate weight sharing. Through this construction, we achieve more efficient parameter sharing and mitigate forgetting by keeping half of the weights of a pretrained model fixed. We also use a new multi-task data sampling strategy to mitigate the negative effects of data imbalance across tasks. Using this approach, we are able to surpass single task fine-tuning methods while being parameter and data efficient (using around 66% of the data for weight updates). Compared to other BERT Large methods on GLUE, our 8-task model surpasses other Adapter methods by 2.8% and our 24-task model outperforms by 0.7-1.0% models that use MTL and single task fine-tuning. We show that a larger variant of our single multi-task model approach performs competitively across 26 NLP tasks and yields state-of-the-art results on a number of test and development sets. Our code is publicly available at https://github.com/CAMTL/CA-MTL.Comment: ICLR 2021 (Reprint

    On Conditional and Compositional Language Model Differentiable Prompting

    Full text link
    Prompts have been shown to be an effective method to adapt a frozen Pretrained Language Model (PLM) to perform well on downstream tasks. Prompts can be represented by a human-engineered word sequence or by a learned continuous embedding. In this work, we investigate conditional and compositional differentiable prompting. We propose a new model, Prompt Production System (PRopS), which learns to transform task instructions or input metadata, into continuous prompts that elicit task-specific outputs from the PLM. Our model uses a modular network structure based on our neural formulation of Production Systems, which allows the model to learn discrete rules -- neural functions that learn to specialize in transforming particular prompt input patterns, making it suitable for compositional transfer learning and few-shot learning. We present extensive empirical and theoretical analysis and show that PRopS consistently surpasses other PLM adaptation techniques, and often improves upon fully fine-tuned models, on compositional generalization tasks, controllable summarization and multilingual translation, while needing fewer trainable parameters.Comment: Accepted at International Joint Conference on Artificial Intelligence (IJCAI) 202

    On Extractive and Abstractive Neural Document Summarization with Transformer Language Models

    Full text link
    We present a method to produce abstractive summaries of long documents that exceed several thousand words via neural abstractive summarization. We perform a simple extractive step before generating a summary, which is then used to condition the transformer language model on relevant information before being tasked with generating a summary. We show that this extractive step significantly improves summarization results. We also show that this approach produces more abstractive summaries compared to prior work that employs a copy mechanism while still achieving higher rouge scores. Note: The abstract above was not written by the authors, it was generated by one of the models presented in this paper

    Using Graph Algorithms to Pretrain Graph Completion Transformers

    Full text link
    Recent work on Graph Neural Networks has demonstrated that self-supervised pretraining can further enhance performance on downstream graph, link, and node classification tasks. However, the efficacy of pretraining tasks has not been fully investigated for downstream large knowledge graph completion tasks. Using a contextualized knowledge graph embedding approach, we investigate five different pretraining signals, constructed using several graph algorithms and no external data, as well as their combination. We leverage the versatility of our Transformer-based model to explore graph structure generation pretraining tasks (i.e. path and k-hop neighborhood generation), typically inapplicable to most graph embedding methods. We further propose a new path-finding algorithm guided by information gain and find that it is the best-performing pretraining task across three downstream knowledge graph completion datasets. While using our new path-finding algorithm as a pretraining signal provides 2-3% MRR improvements, we show that pretraining on all signals together gives the best knowledge graph completion results. In a multitask setting that combines all pretraining tasks, our method surpasses the latest and strong performing knowledge graph embedding methods on all metrics for FB15K-237, on MRR and Hit@1 for WN18RRand on MRR and hit@10 for JF17K (a knowledge hypergraph dataset)

    Evaluating Attention Networks for Anaphora Resolution

    Get PDF
    In this paper, we evaluate the results of using inter and intra attention mechanisms from two architectures, a Deep Attention Long Short-Term Memory-Network (LSTM-N) (Cheng et al., 2016) and a Decomposable Attention model (Parikh et al., 2016), for anaphora resolution, i.e. detecting coreference relations between a pronoun and a noun (its antecedent). The models are adapted from an entailment task, to address the pronominal coreference resolution task by comparing two pairs of sentences: one with the original sentences containing the antecedent and the pronoun, and another one with the pronoun replaced with a correct or an incorrect antecedent. The goal is thus to detect the correct replacements, assuming the original sentence pair entails the one with the correct replacement, but not one with an incorrect replacement. We use the CoNLL-2012 English dataset (Pradhan et al., 2012) to train the models and evaluate the ability to recognize correct and incorrect pronoun replacements in sentence pairs. We find that the Decomposable Attention Model performs better, while using a much simpler architecture. Furthermore, we focus on two previous studies that use intra- and inter-attention mechanisms, discuss how they relate to each other, and examine how these advances work to identify correct antecedent replacements

    JaxPruner: A concise library for sparsity research

    Full text link
    This paper introduces JaxPruner, an open-source JAX-based pruning and sparse training library for machine learning research. JaxPruner aims to accelerate research on sparse neural networks by providing concise implementations of popular pruning and sparse training algorithms with minimal memory and latency overhead. Algorithms implemented in JaxPruner use a common API and work seamlessly with the popular optimization library Optax, which, in turn, enables easy integration with existing JAX based libraries. We demonstrate this ease of integration by providing examples in four different codebases: Scenic, t5x, Dopamine and FedJAX and provide baseline experiments on popular benchmarks.Comment: Jaxpruner is hosted at http://github.com/google-research/jaxprune
    corecore