38 research outputs found
The Sub-Surface Structure of a Large Sample of Active Regions
We employ ring-diagram analysis to study the sub-surface thermal structure of
active regions. We present results using a large number of active regions over
the course of Solar Cycle 23. We present both traditional inversions of
ring-diagram frequency differences, with a total sample size of 264, and a
statistical study using Principal Component Analysis. We confirm earlier
results on smaller samples that sound speed and adiabatic index are changed
below regions of strong magnetic field. We find that sound speed is decreased
in the region between approximately r=0.99R_sun and r=0.995R_sun (depths of 3Mm
to 7Mm), and increased in the region between r=0.97R_sun and r=0.985R_sun
(depths of 11Mm to 21Mm). The adiabatic index is enhanced in the same deeper
layers that sound-speed enhancement is seen. A weak decrease in adiabatic index
is seen in the shallower layers in many active regions. We find that the
magnitudes of these perturbations depend on the strength of the surface
magnetic field, but we find a great deal of scatter in this relation, implying
other factors may be relevant.Comment: 16 pages, 11 figures, accepted for publication in Solar Physic
Stellar Inversion Techniques
Stellar seismic inversions have proved to be a powerful technique for probing
the internal structure of stars, and paving the way for a better understanding
of the underlying physics by revealing some of the shortcomings in current
stellar models. In this lecture, we provide an introduction to this topic by
explaining kernel-based inversion techniques. Specifically, we explain how
various kernels are obtained from the pulsation equations, and describe
inversion techniques such as the Regularised Least-Squares (RLS) and Optimally
Localised Averages (OLA) methods.Comment: 20 pages, 8 figures. Lecture presented at the IVth Azores
International Advanced School in Space Sciences on "Asteroseismology and
Exoplanets: Listening to the Stars and Searching for New Worlds"
(arXiv:1709.00645), which took place in Horta, Azores Islands, Portugal in
July 201
Interpreting Helioseismic Structure Inversion Results of Solar Active Regions
Helioseismic techniques such as ring-diagram analysis have often been used to
determine the subsurface structural differences between solar active and quiet
regions. Results obtained by inverting the frequency differences between the
regions are usually interpreted as the sound-speed differences between them.
These in turn are used as a measure of temperature and magnetic-field strength
differences between the two regions. In this paper we first show that the
"sound-speed" difference obtained from inversions is actually a combination of
sound-speed difference and a magnetic component. Hence, the inversion result is
not directly related to the thermal structure. Next, using solar models that
include magnetic fields, we develop a formulation to use the inversion results
to infer the differences in the magnetic and thermal structures between active
and quiet regions. We then apply our technique to existing structure inversion
results for different pairs of active and quiet regions. We find that the
effect of magnetic fields is strongest in a shallow region above 0.985R_sun and
that the strengths of magnetic-field effects at the surface and in the deeper
(r < 0.98R_sun) layers are inversely related, i.e., the stronger the surface
magnetic field the smaller the magnetic effects in the deeper layers, and vice
versa. We also find that the magnetic effects in the deeper layers are the
strongest in the quiet regions, consistent with the fact that these are
basically regions with weakest magnetic fields at the surface. Because the
quiet regions were selected to precede or follow their companion active
regions, the results could have implications about the evolution of magnetic
fields under active regions.Comment: Accepted for publication in Solar Physic