3 research outputs found

    Inhaled Carbon Monoxide Provides Cerebral Cytoprotection in Pigs

    Get PDF
    Carbon monoxide (CO) at low concentrations imparts protective effects in numerous preclinical small animal models of brain injury. Evidence of protection in large animal models of cerebral injury, however, has not been tested. Neurologic deficits following open heart surgery are likely related in part to ischemia reperfusion injury that occurs during cardiopulmonary bypass surgery. Using a model of deep hypothermic circulatory arrest (DHCA) in piglets, we evaluated the effects of CO to reduce cerebral injury. DHCA and cardiopulmonary bypass (CPB) induced significant alterations in metabolic demands, including a decrease in the oxygen/glucose index (OGI), an increase in lactate/glucose index (LGI) and a rise in cerebral blood pressure that ultimately resulted in increased cell death in the neocortex and hippocampus that was completely abrogated in piglets preconditioned with a low, safe dose of CO. Moreover CO-treated animals maintained normal, pre-CPB OGI and LGI and corresponding cerebral sinus pressures with no change in systemic hemodynamics or metabolic intermediates. Collectively, our data demonstrate that inhaled CO may be beneficial in preventing cerebral injury resulting from DHCA and offer important therapeutic options in newborns undergoing DHCA for open heart surgery

    Design and Rationale of Safe Pediatric Euglycemia After Cardiac Surgery (SPECS): A Randomized Controlled Trial of Tight Glycemic Control After Pediatric Cardiac Surgery

    Get PDF
    Objectives: To describe the design of a clinical trial testing the hypothesis that children randomized to tight glycemic control with intensive insulin therapy after cardiac surgery will have improved clinical outcomes compared to children randomized to conventional blood glucose management. Design: Two-center, randomized controlled trial. Setting: Cardiac ICUs at two large academic pediatric centers. Patients: Children from birth to those aged 36 months recovering in the cardiac ICU after surgery with cardiopulmonary bypass. Interventions: Subjects in the tight glycemic control (intervention) group receive an intravenous insulin infusion titrated to achieve normoglycemia (target blood glucose range of 80–110 mg/dL; 4.4–6.1 mmol/L). The intervention begins at admission to the cardiac ICU from the operating room and terminates when the patient is ready for discharge from the ICU. Continuous glucose monitoring is performed during insulin infusion to minimize the risks of hypoglycemia. The standard care group has no target blood glucose range. Measurements and Main Results: The primary outcome is the development of any nosocomial infection (bloodstream, urinary tract, and surgical site infection or nosocomial pneumonia). Secondary outcomes include mortality, measures of cardiorespiratory function and recovery, laboratory indices of nutritional balance, immunologic, endocrinologic, and neurologic function, cardiac ICU and hospital length of stay, and neurodevelopmental outcome at 1 and 3 yrs of age. A total of 980 subjects will be enrolled (490 in each treatment arm) for sufficient power to show a 50% reduction in the prevalence of the primary outcome. Conclusions: Pediatric cardiac surgery patients may recognize great benefit from tight glycemic control in the postoperative period, particularly with regard to reduction of nosocomial infections. The Safe Pediatric Euglycemia after Cardiac Surgery trial is designed to provide an unbiased answer to the question of whether this therapy is indeed beneficial and to define the associated risks of therapy
    corecore