119 research outputs found

    Different causes of closure of Small Business Enterprises: alternative models for competing risks survival analysis

    Get PDF
    We examine the time until closure of Small Business Enterprises in Umbria, Italy between 2008 and 2013, and the factors that influence it. Earlier analysis, using Cox regression, considered failure (closure) from any cause. However, there are different reasons for inactivity: voluntary winding-up (1808 of15184 firms in our data, 59.3% of the 3049 failures); bankruptcy (236, 7.7%); and closure without action by creditors or courts (1005, 33.0%). While the earlier analysis provides a valuable overall picture, it is also interesting to ex-amine the separate causes, their rates of occurrence and which factors influence them separately. We do this using competing risks analyses, employing both of the regression methods that are prominent in the literature, basedon cause-specific and sub-distribution hazard functions (Fine-Gray model). Furthermore, a proportional odds model was used to estimate cumulative incidences of failure by cause. Data included the firm's year of foundation, location, legal form and sector of activity. Financial indexes were constructedfrom annual balance sheets. The date and reason for closure were recorded if the firrm ceased activity. Findings included major differences between types of firm; for example, cooperatives had greatly increased hazards for winding-up(HR of 2.44 and 2.61 in the two approaches) but greatly reduced hazards for closure (0.48 and 0.45) compared to publicly traded companies. All-causes analysis averaged these strong effects into an insignicant one (1.05). Coefficients from the proportional odds model were similar to those from theFine-Gray model, but have the advantage of interpretability

    Fistole artero-venose durali cerebrali

    Get PDF
    Il lavoro di tesi affronta l'argomento delle fistole artero venose durali cerebrali proponendosi di identificarne l'epidemiologia, la classificazione, la presentazione clinica, la diagnosi e le possibilità di trattamento. Le fistole artero-venose durali sono lesioni facenti parte del più grande capitolo delle malformazioni vascolari cerebrali di cui costituiscono il 10-15% dei casi. Sono pertanto considerate patologie rare e per molto tempo sono state identificate come patologie congenite e benigne. Anche se tutt'oggi non si conosce l'esatta patogenesi di queste lesioni' è ormai accertata la loro natura acquisita e la possibilità di progressione maligna. Assume sempre più importanza il ruolo della trombosi venosa nella loro patogenesi. In questa tesi vengono presi in considerazione anche i pazienti della clinica neurochirurgica pisana fino al 2015 con lo scopo di comparazione con i dati forniti dalla letteratura

    Modeling SARS-CoV-2 spike/ACE2 protein–protein interactions for predicting the binding affinity of new spike variants for ACE2, and novel ACE2 structurally related human protein targets, for COVID-19 handling in the 3PM context

    Get PDF
    Aims The rapid spread of new SARS-CoV-2 variants has highlighted the crucial role played in the infection by mutations occurring at the SARS-CoV-2 spike receptor binding domain (RBD) in the interactions with the human ACE2 receptor. In this context, it urgently needs to develop new rapid tools for quickly predicting the affinity of ACE2 for the SARS-CoV-2 spike RBD protein variants to be used with the ongoing SARS-CoV-2 genomic sequencing activities in the clinics, aiming to gain clues about the transmissibility and virulence of new variants, to prevent new outbreaks and to quickly estimate the severity of the disease in the context of the 3PM. Methods In our study, we used a computational pipeline for calculating the interaction energies at the SARS-CoV-2 spike RBD/ACE2 protein–protein interface for a selected group of characterized infectious variants of concern/interest (VoC/ VoI). By using our pipeline, we built 3D comparative models of the SARS-CoV-2 spike RBD/ACE2 protein complexes for the VoC B.1.1.7-United Kingdom (carrying the mutations of concern/interest N501Y, S494P, E484K at the RBD), P.1- Japan/Brazil (RBD mutations: K417T, E484K, N501Y), B.1.351-South Africa (RBD mutations: K417N, E484K, N501Y), B.1.427/B.1.429-California (RBD mutations: L452R), the B.1.141 (RBD mutations: N439K), and the recent B.1.617.1- India (RBD mutations: L452R; E484Q) and the B.1.620 (RBD mutations: S477N; E484K). Then, we used the obtained 3D comparative models of the SARS-CoV-2 spike RBD/ACE2 protein complexes for predicting the interaction energies at the protein–protein interface. Results Along SARS-CoV-2 mutation database screening and mutation localization analysis, it was ascertained that the most dangerous mutations at VoC/VoI spike proteins are located mainly at three regions of the SARS-CoV-2 spike “boat-shaped” receptor binding motif, on the RBD domain. Notably, the P.1 Japan/Brazil variant present three mutations, K417T, E484K, N501Y, located along the entire receptor binding motif, which apparently determines the highest interaction energy at the SARS-CoV-2 spike RBD/ACE2 protein–protein interface, among those calculated. Conversely, it was also observed that the replacement of a single acidic/hydrophilic residue with a basic residue (E484K or N439K) at the “stern” or “bow” regions, of the boat-shaped receptor binding motif on the RBD, appears to determine an interaction energy with ACE2 receptor higher than that observed with single mutations occurring at the “hull” region or with other multiple mutants. In addition, our pipeline allowed searching for ACE2 structurally related proteins, i.e., THOP1 and NLN, which deserve to be investigated for their possible involvement in interactions with the SARS-CoV-2 spike protein, in those tissues showing a low expression of ACE2, or as a novel receptor for future spike variants. A freely available web-tool for the in silico calculation of the interaction energy at the SARS-CoV-2 spike RBD/ACE2 protein–protein interface, starting from the sequences of the investigated spike and/or ACE2 variants, was made available for the scientific community at: https:// www. mitoa irm. it/ covid 19aff​initi es. Conclusion In the context of the PPPM/3PM, the employment of the described pipeline through the provided webservice, together with the ongoing SARS-CoV-2 genomic sequencing, would help to predict the transmissibility of new variants sequenced from future patients, depending on SARS-CoV-2 genomic sequencing activities and on the specific amino acid replacement and/or on its location on the SARS-CoV-2 spike RBD, to put in play all the possible counteractions for preventing the most deleterious scenarios of new outbreaks, taking into consideration that a greater transmissibility has not to be necessarily related to a more severe manifestation of the disease

    The Role of Optical Coherence Tomography in an Atypical Case of Oculocutaneous Albinism: A Case Report

    Get PDF
    Background: Oculocutaneous albinism is a group of autosomal recessive disorders featuring hypopigmentation of the hair, skin and eyes. Ocular signs associated with the disease are nystagmus, decreased visual acuity, hypopigmentation of the retina, foveal hypoplasia, translucency of the iris, macular transparency, photophobia and abnormal decussation of nerve fibers at the chiasm. Case Report: An 8-year-old Caucasian girl presented to our clinic ‘Referral Center for Hereditary Retinopathies’ of the Second University of Naples with a diagnosis of Stargardt disease and a progressive reduction in visual acuity in both eyes. She underwent a complete ophthalmic examination including standard electroretinography and optical coherence tomography (OCT). A molecular analysis was also performed. Best-corrected visual acuity was 20/30 in the right eye and 20/40 in the left eye. Biomicroscopy of the anterior segment revealed a transparent cornea, in situ and transparent lens and normally pigmented iris. A mild diffuse depigmentation and macular dystrophy were observed at fundus examination. Standard electroretinography showed normal scotopic and photopic responses. OCT revealed high reflectivity across the fovea without depression. The typical OCT pattern led us to direct the molecular analysis towards the genes involved in oculocutaneous albinism. The molecular analysis identified mutations in the TYR gene. Conclusion: In this case, the role of OCT was crucial in guiding the molecular analysis for the diagnosis of albinism. OCT is therefore instrumental in similar cases that do not present typical characteristics of a disease. The case also proves the relevance of molecular analysis to confirm clinical diagnoses in hereditary retinal diseases

    Epigenetic Alterations in Inborn Errors of Immunity

    Get PDF
    The epigenome bridges environmental factors and the genome, fine-tuning the process of gene transcription. Physiological programs, including the development, maturation and maintenance of cellular identity and function, are modulated by intricate epigenetic changes that encompass DNA methylation, chromatin remodeling, histone modifications and RNA processing. The collection of genome-wide DNA methylation data has recently shed new light into the potential contribution of epigenetics in pathophysiology, particularly in the field of immune system and host defense. The study of patients carrying mutations in genes encoding for molecules involved in the epigenetic machinery has allowed the identification and better characterization of environment-genome interactions via epigenetics as well as paving the way for the development of new potential therapeutic options. In this review, we summarize current knowledge of the role of epigenetic modifications in the immune system and outline their potential involvement in the pathogenesis of inborn errors of immunity

    Wilson Disease Protein ATP7B Utilizes Lysosomal Exocytosis to Maintain Copper Homeostasis

    Get PDF
    SummaryCopper is an essential yet toxic metal and its overload causes Wilson disease, a disorder due to mutations in copper transporter ATP7B. To remove excess copper into the bile, ATP7B traffics toward canalicular area of hepatocytes. However, the trafficking mechanisms of ATP7B remain elusive. Here, we show that, in response to elevated copper, ATP7B moves from the Golgi to lysosomes and imports metal into their lumen. ATP7B enables lysosomes to undergo exocytosis through the interaction with p62 subunit of dynactin that allows lysosome translocation toward the canalicular pole of hepatocytes. Activation of lysosomal exocytosis stimulates copper clearance from the hepatocytes and rescues the most frequent Wilson-disease-causing ATP7B mutant to the appropriate functional site. Our findings indicate that lysosomes serve as an important intermediate in ATP7B trafficking, whereas lysosomal exocytosis operates as an integral process in copper excretion and hence can be targeted for therapeutic approaches to combat Wilson disease

    Epidemiology, Clinical Features and Prognostic Factors of Pediatric SARS-CoV-2 Infection: Results From an Italian Multicenter Study

    Get PDF
    Background: Many aspects of SARS-CoV-2 infection in children and adolescents remain unclear and optimal treatment is debated. The objective of our study was to investigate epidemiological, clinical and therapeutic characteristics of pediatric SARS-CoV-2 infection, focusing on risk factors for complicated and critical disease. Methods: The present multicenter Italian study was promoted by the Italian Society of Pediatric Infectious Diseases, involving both pediatric hospitals and general pediatricians/family doctors. All subjects under 18 years of age with documented SARS-CoV-2 infection and referred to the coordinating center were enrolled from March 2020. Results: As of 15 September 2020, 759 children were enrolled (median age 7.2 years, IQR 1.4; 12.4). Among the 688 symptomatic children, fever was the most common symptom (81.9%). Barely 47% of children were hospitalized for COVID-19. Age was inversely related to hospital admission (p < 0.01) and linearly to length of stay (p = 0.014). One hundred forty-nine children (19.6%) developed complications. Comorbidities were risk factors for complications (p < 0.001). Viral coinfections, underlying clinical conditions, age 5\u20139 years and lymphopenia were statistically related to ICU admission (p < 0.05). Garazzino et al. SARS-CoV-2 in Children and Adolescents Conclusions: Complications of COVID-19 in children are related to comorbidities and increase with age. Viral co-infections are additional risk factors for disease progression and multisystem inflammatory syndrome temporarily related to COVID-19 (MIS-C) for ICU admission

    MicroRNA-Restricted Transgene Expression in the Retina

    Get PDF
    Background: Gene transfer using adeno-associated viral (AAV) vectors has been successfully applied in the retina for the treatment of inherited retinal dystrophies. Recently, microRNAs have been exploited to fine-tune transgene expression improving therapeutic outcomes. Here we evaluated the ability of retinal-expressed microRNAs to restrict AAV-mediated transgene expression to specific retinal cell types that represent the main targets of common inherited blinding conditions. Methodology/Principal Findings: To this end, we generated AAV2/5 vectors expressing EGFP and containing four tandem copies of miR-124 or miR-204 complementary sequences in the 39UTR of the transgene expression cassette. These vectors were administered subretinally to adult C57BL/6 mice and Large White pigs. Our results demonstrate that miR-124 and miR-204 target sequences can efficiently restrict AAV2/5-mediated transgene expression to retinal pigment epithelium and photoreceptors, respectively, in mice and pigs. Interestingly, transgene restriction was observed at low vector doses relevant to therapy. Conclusions: We conclude that microRNA-mediated regulation of transgene expression can be applied in the retina to either restrict to a specific cell type the robust expression obtained using ubiquitous promoters or to provide an additiona

    The birth of a human-specific neural gene by incomplete duplication and gene fusion

    Get PDF
    Background: Gene innovation by duplication is a fundamental evolutionary process but is difficult to study in humans due to the large size, high sequence identity, and mosaic nature of segmental duplication blocks. The human-specific gene hydrocephalus-inducing 2, HYDIN2, was generated by a 364 kbp duplication of 79 internal exons of the large ciliary gene HYDIN from chromosome 16q22.2 to chromosome 1q21.1. Because the HYDIN2 locus lacks the ancestral promoter and seven terminal exons of the progenitor gene, we sought to characterize transcription at this locus by coupling reverse transcription polymerase chain reaction and long-read sequencing. Results: 5' RACE indicates a transcription start site for HYDIN2 outside of the duplication and we observe fusion transcripts spanning both the 5' and 3' breakpoints. We observe extensive splicing diversity leading to the formation of altered open reading frames (ORFs) that appear to be under relaxed selection. We show that HYDIN2 adopted a new promoter that drives an altered pattern of expression, with highest levels in neural tissues. We estimate that the HYDIN duplication occurred ~3.2 million years ago and find that it is nearly fixed (99.9%) for diploid copy number in contemporary humans. Examination of 73 chromosome 1q21 rearrangement patients reveals that HYDIN2 is deleted or duplicated in most cases. Conclusions: Together, these data support a model of rapid gene innovation by fusion of incomplete segmental duplications, altered tissue expression, and potential subfunctionalization or neofunctionalization of HYDIN2 early in the evolution of the Homo lineage
    corecore