185 research outputs found
Quantitative image mean squared displacement (iMSD) analysis of the dynamics of profilin 1 at the membrane of live cells.
Image mean square displacement analysis (iMSD) is a method allowing the mapping of diffusion dynamics of molecules in living cells. However, it can also be used to obtain quantitative information on the diffusion processes of fluorescently labelled molecules and how their diffusion dynamics change when the cell environment is modified. In this paper, we describe the use of iMSD to obtain quantitative data of the diffusion dynamics of a small cytoskeletal protein, profilin 1 (pfn1), at the membrane of live cells and how its diffusion is perturbed when the cells are treated with Cytochalasin D and/or the interactions of pfn1 are modified when its actin and polyphosphoinositide binding sites are mutated (pfn1-R88A). Using total internal reflection fluorescence microscopy images, we obtained data on isotropic and confined diffusion coefficients, the proportion of cell areas where isotropic diffusion is the major diffusion mode compared to the confined diffusion mode, the size of the confinement zones and the size of the domains of dynamic partitioning of pfn1. Using these quantitative data, we could demonstrate a decreased isotropic diffusion coefficient for the cells treated with Cytochalasin D and for the pfn1-R88A mutant. We could also see changes in the modes of diffusion between the different conditions and changes in the size of the zones of pfn1 confinements for the pfn1 treated with Cytochalasin D. All of this information was acquired in only a few minutes of imaging per cell and without the need to record thousands of single molecule trajectories
Classical symmetric functions in superspace
We present the basic elements of a generalization of symmetric function
theory involving functions of commuting and anticommuting (Grassmannian)
variables. These new functions, called symmetric functions in superspace, are
invariant under the diagonal action of the symmetric group on the sets of
commuting and anticommuting variables. In this work, we present the superspace
extension of the classical bases, namely, the monomial symmetric functions, the
elementary symmetric functions, the completely symmetric functions, and the
power sums. Various basic results, such as the generating functions for the
multiplicative bases, Cauchy formulas, involution operations as well as the
combinatorial scalar product are also generalized.Comment: 21 pages, this supersedes the first part of math.CO/041230
Effect of L-Methionine Feeding on Serum Homocysteine and Glutathione Levels in Male and Female Wistar Rats
Homocysteine (Hcy) is a critical indicator of cardiovascular disease. High levels of Hcy have now been recognised as a risk factor for the development of a wide range of diseases. Hyperhomocysteinemia (Hhcy) can be induced by methionine or Hcy supplementation. On the other hand, Glutathione (GSH) is a major antioxidant in the body and also an important compound for oxidative defence. It is composed of 3 amino acids: cysteine, glutamate, and glycine. Interestingly, methionine is also a crucial compound in GSH synthesis. This study aims to assess the impact of 1% L-methionine feeding (10 or 30 weeks) on the body weight and serum Hcy and GSH levels of young adult (16 weeks) and middle-aged (36 weeks) Wistar rats of both sexes. Serum was analysed for Hcy and reduced GSH levels by liquid chromatography mass spectrometry (LCMS) in response to 1% L-methionine feeding. One percent L-methionine feeding decreased body weight in all conditions investigated, although this only reached significance in males after 10 weeks supplementation and females after 30 weeks supplementation. It also induced a significant increase in the serum Hcy levels of male Wistar rats, whilst having no significant effect on Hcy serum levels in female rats. Finally, we also observed a small increase in serum GSH levels in female Wistar rats but no change in serum GSH levels in the males. These results suggest that methionine feeding affects body weight homeostasis and alters by products of methionine catabolism
1D Self-Assembly and Ice Recrystallization Inhibition Activity of Antifreeze Glycopeptide-Functionalized Perylene Bisimides
Antifreeze glycoproteins (AFGPs) are polymeric natural products that have drawn considerable interest in diverse research fields owing to their potent ice recrystallization inhibition (IRI) activity. Self-assembled materials have emerged as a promising class of biomimetic ice growth inhibitor, yet the development of AFGP-based supramolecular materials that emulate the aggregative behavior of AFGPs have not yet been reported. Here, we demonstrate the first example of the 1D self-assembly and IRI activity of AFGP-functionalized perylene bisimides (AFGP-PBIs). Glycopeptide-functionalized PBIs underwent 1D self-assembly in water and showed modest IRI activity, which could be tuned through substitution of the PBI core. This work presents essential proof-of-principle for the development of novel IRIs as potential supramolecular cryoprotectans and glycoprotein mimics
Special Care and School Difficulties in 8-Year-Old Very Preterm Children: The Epipage Cohort Study
OBJECTIVES: To investigate school difficulties, special care and behavioral problems in 8 year-old very preterm (VPT) children. PATIENT AND METHODS: Longitudinal population-based cohort in nine regions of France of VPT children and a reference group born at 39-40 weeks of gestation (WG). The main outcome measures were information about school, special care and behavioral problems using Strengths and Difficulties Questionnaire from a questionnaire to parents. RESULTS: Among the 1439 VPT children, 5% (75/1439) were in a specialised school or class, 18% (259/1439) had repeated a grade in a mainstream class and 77% (1105/1439) were in the appropriate grade-level in mainstream class; these figures were 1% (3/327) , 5% (16/327) and 94% (308/327) , respectively, for the reference group. Also, 15% (221/1435) of VPT children in a mainstream class received support at school versus 5% (16/326) of reference group. More VPT children between the ages of five and eight years received special care (55% (794/1436)) than children born at term (38% (124/325)); more VPT children (21% (292/1387)) had behavioral difficulties than the reference group (11% (35/319)). School difficulties, support at school, special care and behavioral difficulties in VPT children without neuromotor or sensory deficits varied with gestational age, socioeconomic status, and cognitive score at the age of five. CONCLUSIONS: Most 8-year-old VPT children are in mainstream schools. However, they have a high risk of difficulty in school, with more than half requiring additional support at school and/or special care. Referral to special services has increased between the ages of 5 and 8 years, but remained insufficient for those with borderline cognitive scores
Contribution of Distinct Homeodomain DNA Binding Specificities to Drosophila Embryonic Mesodermal Cell-Specific Gene Expression Programs
Homeodomain (HD) proteins are a large family of evolutionarily conserved transcription factors (TFs) having diverse developmental functions, often acting within the same cell types, yet many members of this family paradoxically recognize similar DNA sequences. Thus, with multiple family members having the potential to recognize the same DNA sequences in cis-regulatory elements, it is difficult to ascertain the role of an individual HD or a subclass of HDs in mediating a particular developmental function. To investigate this problem, we focused our studies on the Drosophila embryonic mesoderm where HD TFs are required to establish not only segmental identities (such as the Hox TFs), but also tissue and cell fate specification and differentiation (such as the NK-2 HDs, Six HDs and identity HDs (I-HDs)). Here we utilized the complete spectrum of DNA binding specificities determined by protein binding microarrays (PBMs) for a diverse collection of HDs to modify the nucleotide sequences of numerous mesodermal enhancers to be recognized by either no or a single subclass of HDs, and subsequently assayed the consequences of these changes on enhancer function in transgenic reporter assays. These studies show that individual mesodermal enhancers receive separate transcriptional input from both I–HD and Hox subclasses of HDs. In addition, we demonstrate that enhancers regulating upstream components of the mesodermal regulatory network are targeted by the Six class of HDs. Finally, we establish the necessity of NK-2 HD binding sequences to activate gene expression in multiple mesodermal tissues, supporting a potential role for the NK-2 HD TF Tinman (Tin) as a pioneer factor that cooperates with other factors to regulate cell-specific gene expression programs. Collectively, these results underscore the critical role played by HDs of multiple subclasses in inducing the unique genetic programs of individual mesodermal cells, and in coordinating the gene regulatory networks directing mesoderm development.National Institutes of Health (U.S.) (Grant R01 HG005287
Large-scale real-world data on a multidisciplinary approach to spinal cord stimulation for persistent spinal pain syndromes: first evaluation of the Neuro-Pain® nationwide screening and follow-up interactive register
IntroductionSpinal cord stimulation is a common treatment option for neuropathic pain conditions. Despite its extensive use and multiple technological evolutions, long term efficacy of spinal cord stimulation is debated. Most studies on spinal cord stimulation include a rather limited number of patients and/or follow-ups over a limited period. Therefore, there is an urgent need for real-world, long-term data.MethodsIn 2018, the Belgian government initiated a nationwide secure platform for the follow-up of all new and existing spinal cord stimulation therapies. This is a unique approach used worldwide. Four years after the start of centralized recording, the first global extraction of data was performed.ResultsHerein, we present the findings, detailing the different steps in the centralized procedure, as well as the observed patient and treatment characteristics. Furthermore, we identified dropouts during the screening process, the reasons behind discontinuation, and the evolution of key indicators during the trial period. In addition, we obtained the first insights into the evolution of the clinical impact of permanent implants on the overall functioning and quality of life of patients in the long-term.DiscussionAlthough these findings are the results of the first data extraction, some interesting conclusions can be drawn. The long-term outcomes of neuromodulation are complex and subject to many variables. Future data extraction will allow us to identify these confounding factors and the early predictors of success. In addition, we will propose further optimization of the current process
Serine metabolism remodeling after platinum-based chemotherapy identifies vulnerabilities in a subgroup of resistant ovarian cancers
Resistance to platinum-based chemotherapy represents a major clinical challenge for many tumors, including epithelial ovarian cancer. Patients often experience several response-relapse events, until tumors become resistant and life expectancy drops to 12–15 months. Despite improved knowledge of the molecular determinants of platinum resistance, the lack of clinical applicability limits exploitation of many potential targets, leaving patients with limited options. Serine biosynthesis has been linked to cancer growth and poor prognosis in various cancer types, however its role in platinum-resistant ovarian cancer is not known. Here, we show that a subgroup of resistant tumors decreases phosphoglycerate dehydrogenase (PHGDH) expression at relapse after platinum-based chemotherapy. Mechanistically, we observe that this phenomenon is accompanied by a specific oxidized nicotinamide adenine dinucleotide (NAD+) regenerating phenotype, which helps tumor cells in sustaining Poly (ADP-ribose) polymerase (PARP) activity under platinum treatment. Our findings reveal metabolic vulnerabilities with clinical implications for a subset of platinum resistant ovarian cancers
Kinetic Measurements of Di- and Tripeptide and Peptidomimetic Drug Transport in Different Kidney Regions Using the Fluorescent Membrane Potential-Sensitive Dye, DiS-C3-(3).
Tri- and dipeptides are transported in the kidney by PEPT1 and PEPT2 isoforms. The aim of this study was to investigate differences in transport kinetics between renal brush border (BBMV) and outer medulla (OMMV) membrane vesicles (where PEPT1 and PEPT2 are sequentially available) for a range of di- and tripeptides and peptidomimetic drugs. This was accomplished through the use of the potential-sensitive fluorescent dye 3,3'-dipropylthiacarbocyanine iodide [DiS-C3-(3)]. BBMV and OMMV were prepared from the rat kidney using standard techniques. The presence of PEPT1 in BBMV and PEPT2 in OMMV was confirmed using Western blotting. Fluorescence changes were measured when extravesicular medium at pH 6.6 containing 0-1 mM substrates was added to a cuvette containing vesicles pre-equilibrated at pH 7.4 and 2.71 μM DiS-C3-(3). An increase in fluorescence intensity occurred upon substrate addition reflecting the expected positive change in membrane potential difference. Of the range of substrates studied, OMMV manifested the highest affinity to cefadroxil and valacyclovir (K m 4.3 ± 1.2 and 11.7 ± 3.2 µM, respectively) compared to other substrates, whilst the BBMV showed a higher affinity to Gly-His (K m 15.4 ± 3.1 µM) compared to other substrates. In addition, OMMV showed higher affinity and capacity to Gly-Gln (K m 47.1 ± 9.8 µM, 55.5 ± 2.8 ΔF/s/mg protein) than BBMV (K m 78.1 ± 13.3 µM and 35.5 ± 1.7 ΔF/s/mg protein, respectively). In conclusion, this study successfully separated the expression of PEPT1 and PEPT2 into different vesicle preparations inferring their activity in different regions of the renal proximal tubule
- …