122 research outputs found

    Epigenetic reprogramming of human embryonic stem cells into skeletal muscle cells and generation of contractile myospheres

    Get PDF
    Direct generation of a homogeneous population of skeletal myoblasts from human embryonic stem cells (hESCs) and formation of three-dimensional contractile structures for disease modeling in vitro are current challenges in regenerative medicine. Previous studies reported on the generation of myoblasts from ESC-derived embryoid bodies (EB), but not from undifferentiated ESCs, indicating the requirement for mesodermal transition to promote skeletal myogenesis. Here, we show that selective absence of the SWI/SNF component BAF60C (encoded by SMARCD3) confers on hESCs resistance to MyoD-mediated activation of skeletal myogenesis. Forced expression of BAF60C enables MyoD to directly activate skeletal myogenesis in hESCs by instructing MyoD positioning and allowing chromatin remodeling at target genes. BAF60C/MyoD-expressing hESCs are epigenetically committed myogenic progenitors, which bypass the mesodermal requirement and, when cultured as floating clusters, give rise to contractile three-dimensional myospheres composed of skeletal myotubes. These results identify BAF60C as a key epigenetic determinant of hESC commitment to the myogenic lineage and establish the molecular basis for the generation of hESC-derived myospheres exploitable for 'disease in a dish' models of muscular physiology and dysfunction

    HDAC4 regulates satellite cell proliferation and differentiation by targeting P21 and Sharp1 genes

    Get PDF
    Skeletal muscle exhibits a high regenerative capacity, mainly due to the ability of satellite cells to replicate and differentiate in response to appropriate stimuli. Epigenetic control is effective at different stages of this process. It has been shown that the chromatin-remodeling factor HDAC4 is able to regulate satellite cell proliferation and commitment. However, its molecular targets are still uncovered. To explain the signaling pathways regulated by HDAC4 in satellite cells, we generated tamoxifen-inducible mice with conditional inactivation of HDAC4 in Pax7(+) cells (HDAC4 KO mice). We found that the proliferation and differentiation of HDAC4 KO satellite cells were compromised, although similar amounts of satellite cells were found in mice. Moreover, we found that the inhibition of HDAC4 in satellite cells was sufficient to block the differentiation process. By RNA-sequencing analysis we identified P21 and Sharp1 as HDAC4 target genes. Reducing the expression of these target genes in HDAC4 KO satellite cells, we also defined the molecular pathways regulated by HDAC4 in the epigenetic control of satellite cell expansion and fusion

    The Stat3-Fam3a axis promotes muscle stem cell myogenic lineage progression by inducing mitochondrial respiration.

    Get PDF
    Metabolic reprogramming is an active regulator of stem cell fate choices, and successful stem cell differentiation in different compartments requires the induction of oxidative phosphorylation. However, the mechanisms that promote mitochondrial respiration during stem cell differentiation are poorly understood. Here we demonstrate that Stat3 promotes muscle stem cell myogenic lineage progression by stimulating mitochondrial respiration in mice. We identify Fam3a, a cytokine-like protein, as a major Stat3 downstream effector in muscle stem cells. We demonstrate that Fam3a is required for muscle stem cell commitment and skeletal muscle development. We show that myogenic cells secrete Fam3a, and exposure of Stat3-ablated muscle stem cells to recombinant Fam3a in vitro and in vivo rescues their defects in mitochondrial respiration and myogenic commitment. Together, these findings indicate that Fam3a is a Stat3-regulated secreted factor that promotes muscle stem cell oxidative metabolism and differentiation, and suggests that Fam3a is a potential tool to modulate cell fate choices

    Association of Ataxia Telangiectasia Mutated (ATM) Gene Mutation/Deletion with Rhabdomyosarcoma – retraction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rhabdomyosarcoma is a common malignancy in children. There are two major types of rhabdomyosarcomas, the embryonal and the alveolar, differing in cytogenetic and morphologic features. The alveolar type of rhabdomyosarcoma is frequently associated with chromosome translocation t(2, 13) and poor clinical prognosis. Pathogenesis of rhabdomyosarcoma remains obscure, and especially it occurs in the location where skeletal muscle is absent. We report here that there is a high frequency of association of rhabdomyosarcoma with ataxia telangiectasia mutated (ATM) gene mutation/deletion.</p> <p>Result</p> <p>Totally 17 cases of rhabdomyosarcoma specimens were studied by immunohistochemical or immunofluorescent staining with ATM antibody and revealed that 7 of the 17 cases were negative for ATM expression (41%). Further analyses of rhabdomyosarcoma cell lines with RT-PCR revealed that in Rh30 cells, an alveolar rhabdomyosarcoma cell line, there are three separate deletions/mutations of the ATM mRNA. Western blotting analysis of the Rh30 cellular extract with anti-ATM antibody showed that there is an aberrant form of ATM protein within the Rh30 cells that are smaller than normal control.</p> <p>Conclusion</p> <p>These results suggest a link of ATM gene deletion/mutation with rhabdomyosarcoma, and since ATM kinase is a crucial regulatory protein in DNA damage repair signaling pathway, and ATM deletion/mutation may contribute to pathogenesis of rhabdomyosarcoma.</p

    Acute conversion of patient-derived Duchenne muscular dystrophy iPSC into myotubes reveals constitutive and inducible over-activation of TGFβ-dependent pro-fibrotic signaling

    Get PDF
    Background In Duchenne muscular dystrophy (DMD), DYSTROPHIN deficiency exposes myofibers to repeated cycles of contraction/degeneration, ultimately leading to muscle loss and replacement by fibrotic tissue. DMD pathology is typically exacerbated by excessive secretion of TGFβ and consequent accumulation of pro-fibrotic components of the extra-cellular matrix (ECM), which in turn impairs compensatory regeneration and complicates the efficacy of therapeutic strategies. It is currently unclear whether DMD skeletal muscle fibers directly contribute to excessive activation of TGFβ. Development of skeletal myofibers from DMD patient-derived induced pluripotent stem cells (iPSC), as an “in dish” model of disease, can be exploited to determine the myofiber contribution to pathogenic TGFβ signaling in DMD and might provide a screening platform for the identification of anti-fibrotic interventions in DMD. Methods We describe a rapid and efficient method for the generation of contractile human skeletal muscle cells from DMD patient-derived hiPSC, based on the inducible expression of MyoD and BAF60C (encoded by SMARCD3 gene), using an enhanced version of piggyBac (epB) transposone vectors. DMD iPSC-derived myotubes were tested as an “in dish” disease model and exposed to environmental and mechanical cues that recapitulate salient pathological features of DMD. Results We show that DMD iPSC-derived myotubes exhibit a constitutive activation of TGFβ-SMAD2/3 signaling. High-content screening (HCS)-based quantification of nuclear phosphorylated SMAD2/3 signal revealed that DMD iPSC-derived myotubes also exhibit increased activation of the TGFβ-SMAD2/3 signaling following exposure to either recombinant TGFβ or electrical pacing-induced contraction. Conclusions Acute conversion of DMD patient-derived iPSC into skeletal muscles, by the ectopic expression of MyoD and BAF60C, provides a rapid and reliable protocol for an “in dish” DMD model that recapitulates key pathogenic features of disease pathology, such as the constitutive activation of the TGFβ/SMAD signaling as well as the deregulated response to pathogenic stimuli, e.g., ECM-derived signals or mechanical cues. Thus, this model is suitable for the identification of new therapeutic targets in DMD patient-specific muscles

    Reactive oxygen intermediates mediate angiotensin II-induced c-Jun.c-Fos heterodimer DNA binding activity and proliferative hypertrophic responses in myogenic cells

    Get PDF
    Angiotensin II (Ang-II) receptor engagement activates many immediate early response genes in both vascular smooth muscle cells and cardiomyocytes whether a hyperplastic or hypertrophic response is taking place. Although the signaling pathways stimulated by Ang-II in different cell lines have been widely characterized, the correlation between the generation of different second messengers and specific physiological responses remains relatively unexplored. In this study, we report how in both C2C12 quiescent myoblasts and differentiated myotubes Ang-II significantly stimulates AP1-driven transcription and c-Jun.c-Fos heterodimer DNA binding activity. Using a set of different protein kinase inhibitors, we could demonstrate that Ang-II-induced increase in AP1 binding is not mediated by the cAMP-dependent pathway and that both protein kinase C and tyrosine kinases are involved. The observation that in quiescent myoblasts Ang-II increase of AP1 binding and induction of DNA synthesis and, in differentiated myotubes, Ang-II stimulation of protein synthesis are abolished by the cysteine-derivative and glutathione precursor N-acetyl-L-cysteine strongly suggests a role for reactive oxygen intermediates in the intracellular transduction of Ang-II signals for immediate early gene induction, cell proliferation, and hypertrophic responses

    Revealing the Therapeutic Potential of Botulinum Neurotoxin Type A in Counteracting Paralysis and Neuropathic Pain in Spinally Injured Mice

    Get PDF
    Botulinum neurotoxin type A (BoNT/A) is a major therapeutic agent that has been proven to be a successful treatment for different neurological disorders, with emerging novel therapeutic indications each year. BoNT/A exerts its action by blocking SNARE complex formation and vesicle release through the specific cleavage of SNAP-25 protein; the toxin is able to block the release of pro-inflammatory molecules for months after its administration. Here we demonstrate the extraordinary capacity of BoNT/A to neutralize the complete paralysis and pain insensitivity induced in a murine model of severe spinal cord injury (SCI). We show that the toxin, spinally administered within one hour from spinal trauma, exerts a long-lasting proteolytic action, up to 60 days after its administration, and induces a complete recovery of muscle and motor function. BoNT/A modulates SCI-induced neuroglia hyperreactivity, facilitating axonal restoration, and preventing secondary cells death and damage. Moreover, we demonstrate that BoNT/A affects SCI-induced neuropathic pain after moderate spinal contusion, confirming its anti-nociceptive action in this kind of pain, as well. Our results provide the intriguing and real possibility to identify in BoNT/A a therapeutic tool in counteracting SCI-induced detrimental effects. Because of the well-documented BoNT/A pharmacology, safety, and toxicity, these findings strongly encourage clinical translation

    Dynamics of cellular states of fibro-adipogenic progenitors during myogenesis and muscular dystrophy

    Get PDF
    Fibro-adipogenic progenitors (FAPs) are currently defined by their anatomical position, expression of non-specific membrane-associated proteins, and ability to adopt multiple lineages in vitro. Gene expression analysis at single-cell level reveals that FAPs undergo dynamic transitions through a spectrum of cell states that can be identified by differential expression levels of Tie2 and Vcam1. Different patterns of Vcam1-negative Tie2highor Tie2lowand Tie2low/Vcam1-expressing FAPs are detected during neonatal myogenesis, response to acute injury and Duchenne Muscular Dystrophy (DMD). RNA\ua0sequencing analysis identified cell state-specific transcriptional profiles that predict functional interactions with satellite and inflammatory cells. In particular, Vcam1-expressing FAPs, which exhibit a pro-fibrotic expression profile, are transiently activated by acute injury in concomitance with the inflammatory response. Aberrant persistence of Vcam1-expressing FAPs is detected in DMD muscles or upon macrophage depletion, and is associated with muscle fibrosis, thereby revealing how disruption of inflammation-regulated FAPs dynamics leads to a pathogenic outcome

    SerpinE1 drives a cell-autonomous pathogenic signaling in Hutchinson-Gilford progeria syndrome

    Get PDF
    Hutchinson-Gilford progeria syndrome (HGPS) is a rare, fatal disease caused by Lamin A mutation, leading to altered nuclear architecture, loss of peripheral heterochromatin and deregulated gene expression. HGPS patients eventually die by coronary artery disease and cardiovascular alterations. Yet, how deregulated transcriptional networks at the cellular level impact on the systemic disease phenotype is currently unclear. A genome-wide analysis of gene expression in cultures of primary HGPS fibroblasts identified SerpinE1, also known as Plasminogen Activator Inhibitor (PAI-1), as central gene that propels a cell-autonomous pathogenic signaling from the altered nuclear lamina. Indeed, siRNA-mediated downregulation and pharmacological inhibition of SerpinE1 by TM5441 could revert key pathological features of HGPS in patient-derived fibroblasts, including re-activation of cell cycle progression, reduced DNA damage signaling, decreased expression of pro-fibrotic genes and recovery of mitochondrial defects. These effects were accompanied by the correction of nuclear abnormalities. These data point to SerpinE1 as a novel potential effector and target for therapeutic interventions in HGPS pathogenesis

    EV-mediated promotion of myogenic differentiation is dependent on dose, collection medium, and isolation method

    Get PDF
    Extracellular vesicles (EVs) have been implicated in the regulation of myogenic differentiation. C2C12 murine myoblast differentiation was reduced following treatment with GW4869 or heparin (to inhibit exosome biogenesis and EV uptake, respectively). Conversely, treatment with C2C12 myotube-conditioned medium enhanced myogenic differentiation. Ultrafiltration-size exclusion liquid chromatography (UF-SEC) was used to isolate EVs and non-EV extracellular protein in parallel from C2C12 myoblast- and myotube-conditioned medium. UF-SEC-purified EVs promoted myogenic differentiation at low doses (≤2 × 108 particles/mL) and were inhibitory at the highest dose tested (2 × 1011 particles/mL). Conversely, extracellular protein fractions had no effect on myogenic differentiation. While the transfer of muscle-enriched miRNAs (myomiRs) has been proposed to mediate the pro-myogenic effects of EVs, we observed that they are scarce in EVs (e.g., 1 copy of miR-133a-3p per 195 EVs). Furthermore, we observed pro-myogenic effects with undifferentiated myoblast-derived EVs, in which myomiR concentrations are even lower, suggestive of a myomiR-independent mechanism underlying the observed pro-myogenic effects. During these investigations we identified technical factors with profound confounding effects on myogenic differentiation. Specifically, co-purification of insulin (a component of Opti-MEM) in non-EV LC fractions and polymer precipitated EV preparations. These findings provide further evidence that polymer-based precipitation techniques should be avoided in EV research
    corecore