83 research outputs found
Splash : the dispersal of fungal plant pathogens in rain events
Models were developed to study splash dispersal of fungal plant pathogens in space and time. The models incorporate the main mechanisms involved in splash dispersal, that is 1. A raindrop hits the thin water film on the crop surface containing spores and spores are dispersed in the splashing rain droplets, and 2. Splashed spores are redistributed in the crop and on the soil surface. A mechanistic random 'jump' model describes the stochastic processes of splash dispersal over a homogeneous surface from a point source. Numerical analysis showed the importance of ground cover and rain intensity as factors determining model output. More spores were splashed in high intensity rains and, simultaneously, more spores were removed from the system. A diffusion approximation was developed for this mechanistic model which could only be considered a reasonable approximation under certain limiting conditions.Based on the two-dimensional version of the mechanistic model an equation was developed for the total number of spores in the area surrounding an inoculum source over time, N(t). In addition, equations for the expected mean, E(r), and mean squared distance, E(r 2), spores travel during a rain event at a given time were developed. Observed data and model predictions showed that both N(t) and E(r 2) increased to a maximum over time and then declined due to spore removal from the system and depletion of spores at the source. Factors influencing the process could be assessed by changing parameter values.Upward displacement of lesions by stem extension and dispersal of fungal conidia by rain-splash are mechanisms contributing to within-crop disease spread. These mechanisms were incorporated into a model based on the interaction between winter oilseed rape and the light leaf spot pathogen ( Pyrenopeziza brassicae ) as an example. Experimental results showed that most conidia were dispersed during a 15 min duration of rainfall. The trajectory of a droplet depended on the impacted plant part, with a mean horizontal travel distance decreasing with increasing incident drop diameter and a maximum splash height which ranged from 0.3 cm when splashed from a flower up to 57 cm for a pod.These results were incorporated into the model. Stem extension was shown to be an important factor influencing vertical disease spread. Rain events contributed to the splash dispersal of conidia to the plant apex and resulting lesions were directed vertically by internode growth. Periods with frequent rain events in a dense crop canopy were most favorable for disease progress. The upward spread of light leaf spot on winter oilseed rape in experiments at the Institute of Arable Crops Research, Harpenden, UK, was similar to that predicted by the model. Finally, an analytical model was proposed to study the influence of crop characteristics and rain properties on the vertical spread of splashed spores. Splash dispersal was concentrated in the upper layers in a crop having a constant or increasing leaf surface area with height. The greatest splash probabilities occurred and most spores were intercepted in the layers just below the apex of a crop having a decreasing leaf surface area with height.</p
A theory on the vertical dispersal of splash-borne pathogen units influenced by arable crop characteristics
An analytical mechanistic model was proposed to study the vertical spread of splash-borne spores in arable crop canopies. Three crop types were considered, with different LAI distributions. The influences of crop characteristics and rain properties on vertical spread were investigated. The LAI affected the amount of rain being intercepted by the canopy and the vertical displacement of splashed spores. Splash dispersal was concentrated in the upper canopy layers in a crop having LAI constant or increasing with height. Splash probabilities were greatest and most spores were intercepted in the layers just beneath the upper layers in a crop having LAI decreasing with height
A theory on the vertical dispersal of splash-borne pathogen units influenced by arable crop characteristics
An analytical mechanistic model was proposed to study the vertical spread of splash-borne spores in arable crop canopies. Three crop types were considered, with different LAI distributions. The influences of crop characteristics and rain properties on vertical spread were investigated. The LAI affected the amount of rain being intercepted by the canopy and the vertical displacement of splashed spores. Splash dispersal was concentrated in the upper canopy layers in a crop having LAI constant or increasing with height. Splash probabilities were greatest and most spores were intercepted in the layers just beneath the upper layers in a crop having LAI decreasing with height
A practical framework for tracing sources of Salmonella in a pig slaughter plant
Salmonella causes around 30 000 cases of human illness per year in The Netherlands, of which an estimated 25% is caused by pork. Salmonella carrying pigs and resident flora on slaughter equipment are relevant sources of carcass contamination. Although recognized, these sources from which and the routes through which Salmonella is transmitted to the pig carcasses during slaughter are not well understood in a quantitative way
Emetic toxin-producing strains of Bacillus cereus show distinct characteristics within the Bacillus cereus group.
One hundred representative strains of Bacillus cereus were selected from a total collection of 372 B. cereus strains using two typing methods (RAPD and FT-IR) to investigate if emetic toxin-producing hazardous B. cereus strains possess characteristic growth and heat resistance profiles. The strains were classified into three groups: emetic toxin (cereulide)-producing strains (n=17), strains connected to diarrheal foodborne outbreaks (n=40) and food-environment strains (n=43), these latter not producing the emetic toxin. Our study revealed a shift in growth limits towards higher temperatures for the emetic strains, regardless of their origin. None of the emetic toxin-producing strains were able to grow below 10 degrees Celsius. In contrast, 11% (9 food-environment strains) out of the 83 non-emetic toxin-producing strains were able to grow at 4 degrees Celsius and 49% at 7 degrees Celsius (28 diarrheal and 13 food-environment strains). non-emetic toxin-producing strains. All emetic toxin-producing strains were able to grow at 48 degrees Celsius, but only 39% (16 diarrheal and 16 food-environment strains) of the non-emetic toxin-producing strains grew at this temperature. Spores from the emetic toxin-producing strains showed, on average, a higher heat resistance at 90 degrees Celsius and a lower germination, particularly at 7 degrees Celsius, than spores from the other strains. No difference between the three groups in their growth kinetics at 24 degrees Celsius, 37 degrees Celsius, and pH 5.0, 7.0, and 8.0 was observed. Our survey shows that emetic toxin-producing strains of B. cereus have distinct characteristics, which could have important implication for the risk assessment of the emetic type of B. cereus caused food poisoning. For instance, emetic strains still represent a special risk in heat-processed foods or preheated foods that are kept warm (in restaurants and cafeterias), but should not pose a risk in refrigerated foods
The influence of heteroresistance on minimum inhibitory concentration (MIC), investigated using weak-acid stress in food spoilage yeasts
Populations of microbial cells may resist environmental stress by maintaining a high population-median resistance (IC50) or, potentially, a high variability in resistance between individual cells (heteroresistance); where heteroresistance would allow certain cells to resist high stress, provided the population was sufficiently large to include resistant cells. This study sets out to test the hypothesis that both IC50 and heteroresistance may contribute to conventional minimal-inhibitory-concentration (MIC) determinations, using the example of spoilage-yeast resistance to the preservative sorbic acid. Across a panel of 26 diverse yeast species, both heteroresistance and particularly IC50 were positively correlated with predicted MIC. A focused panel of 29 different isolates of a particular spoilage yeast was also examined (isolates previously recorded as Zygosaccharomyces bailii, but genome resequencing revealing that several were in fact hybrid species, Z. parabailii and Z. pseudobailii). Applying a novel high-throughput assay for heteroresistance, it was found that IC50 but not heteroresistance was positively correlated with predicted MIC when considered across all isolates of this panel, but the heteroresistance-MIC interaction differed for the individual Zygosaccharomyces subspecies. Z. pseudobailii exhibited higher heteroresistance than Z. parabailii whereas the reverse was true for IC50, suggesting possible alternative strategies for achieving high MIC between subspecies. This work highlights the limitations of conventional MIC measurements due to the effect of heteroresistance in certain organisms, as the measured resistance can vary markedly with population (inoculum) size.Importance Food spoilage by fungi is a leading cause of food waste, with specialised food spoilage yeasts capable of growth at preservative concentrations above the legal limit, in part due to heteroresistance allowing small subpopulations of cells to exhibit extreme preservative resistance. Whereas heteroresistance has been characterised in numerous ecological contexts, measuring this phenotype systematically and assessing its importance are not encompassed by conventional assay methods. The development here of a high-throughput method for measuring heteroresistance, amenable to automation, addresses this issue and has enabled characterisation of the contribution that heteroresistance may make to conventional MIC measurements. We used the example of sorbic acid heteroresistance in spoilage yeasts like Zygosaccharomyces spp, but the approach is relevant to other fungi and other inhibitors, including antifungals. The work shows how median resistance, heteroresistance and inoculum size should all be considered when selecting appropriate inhibitor doses in real-world antimicrobial applications such as food preservation
Phenotypic Prediction: Linking in vitro Virulence to the Genomics of 59 Salmonella enterica Strains
The increased availability of whole-genome-sequencing techniques generates a wealth of DNA data on numerous organisms, including foodborne pathogens such as Salmonella. However, how these data can be used to improve microbial risk assessment and understanding of Salmonella epidemiology remains a challenge. The aim of this study was to assess variability in in vitro virulence and genetic characteristics between and within different serovars. The phenotypic behavior of 59 strains of 32 different Salmonella enterica serovars from animal, human and food origin was assessed in an in vitro gastro-intestinal tract (GIT) system and they were analyzed for the presence of 233 putative virulence genes as markers for phenotypic prediction. The probability of in vitro infection, P(inf), defined as the fraction of infectious cells passing from inoculation to host cell invasion at the last stage of the GIT system, was interpreted as the in vitro virulence. Results showed that the (average) P(inf) of Salmonella serovars ranged from 5.3E-05 (S. Kedougou) to 5.2E-01 (S. Typhimurium). In general, a higher P(inf) on serovar level corresponded to higher reported human incidence from epidemiological reporting data. Of the 233 virulence genes investigated, only 101 showed variability in presence/absence among the strains. In vitro P(inf) was found to be positively associated with the presence of specific plasmid related virulence genes (mig-5, pef, rck, and spv). However, not all serovars with a relatively high P(inf), > 1E-02, could be linked with these specific genes. Moreover, some outbreak related strains (S. Heidelberg and S. Thompson) did not reveal this association with P(inf). No clear association with in vitro virulence P(inf) was identified when grouping serovars with the same virulence gene profile (virulence plasmid, Typhoid toxin, peg operon and stk operon). This study shows that the in vitro P(inf) variation among individual strains from the same serovar is larger than that found between serovars. Therefore, ranking P(inf) of S. enterica on serovar level alone, or in combination with a serovar specific virulence gene profile, cannot be recommended. The attribution of single biological phenomena to individual strains or serovars is not sufficient to improve the hazard characterization for S. enterica. Future microbial risk assessments, including virulence gene profiles, require a systematic approach linked to epidemiological studies rather than revealing differences in characteristics on serovar level alone
A quantitative approach towards a better understanding of the dynamics of Salmonella spp. in a pork slaughter-line.
Pork contributes significantly to the public health disease burden caused by Salmonella infections. During the slaughter process pig carcasses can become contaminated with Salmonella. Contamination at the slaughter-line is initiated by pigs carrying Salmonella on their skin or in their faeces. Another contamination route could be resident flora present on the slaughter equipment. To unravel the contribution of these two potential sources of Salmonella a quantitative study was conducted. Process equipment (belly openers and carcass splitters), faeces and carcasses (skin and cutting surfaces) along the slaughter-line were sampled at 11 sampling days spanning a period of 4 months. Most samples taken directly after killing were positive for Salmonella. On 96.6% of the skin samples Salmonella was identified, whereas a lower number of animals tested positive in their rectum (62.5%). The prevalence of Salmonella clearly declined on the carcasses at the re-work station, either on the cut section or on the skin of the carcass or both (35.9%). Throughout the sampling period of the slaughter-line the total number of Salmonella per animal was almost 2log lower at the re-work station in comparison to directly after slaughter. Seven different serovars were identified during the study with S. Derby (41%) and S. Typhimurium (29%) as the most prominent types. A recurring S. Rissen contamination of one of the carcass splitters indicated the presence of an endemic 'house flora' in the slaughterhouse studied. On many instances several serotypes per individual sample were found. The enumeration of Salmonella and the genotyping data gave unique insight in the dynamics of transmission of this pathogen in a slaughter-line. The data of the presented study support the hypothesis that resident flora on slaughter equipment was a relevant source for contamination of pork
- …